메뉴 건너뛰기




Volumn 99, Issue 1-2, 1998, Pages 167-175

Unified treatment of Gautschi-Kershaw type inequalities for the gamma function

Author keywords

Bernstein inequality; Gamma function; Psi function

Indexed keywords

COMPUTATIONAL METHODS; POLYNOMIALS; PROBLEM SOLVING; THEOREM PROVING;

EID: 0032208613     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0377-0427(98)00154-X     Document Type: Article
Times cited : (14)

References (12)
  • 1
    • 0003283056 scopus 로고
    • Handbook of mathematical functions
    • National Bureau of Standards, Washington, DC
    • M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, Appl. Math. Series 55, National Bureau of Standards, Washington, DC, 1964.
    • (1964) Appl. Math. Series , vol.55
    • Abramowitz, M.1    Stegun, I.A.2
  • 2
    • 0009916405 scopus 로고
    • An estimate of the remainder in the expansion of the generating function for the legendre polynomials (generalization and improvement of Bernstein's inequality)
    • V.A. Antonov, K.V. Holsevnikov, An estimate of the remainder in the expansion of the generating function for the Legendre polynomials (Generalization and improvement of Bernstein's inequality), Vestnik Leningrad Univ. Math. 13 (1981) 163-166.
    • (1981) Vestnik Leningrad Univ. Math. , vol.13 , pp. 163-166
    • Antonov, V.A.1    Holsevnikov, K.V.2
  • 3
    • 84966216618 scopus 로고
    • On gamma function inequalities
    • J. Bustoz, M.E.H. Ismail, On gamma function inequalities, Math. Comp. 47 (176) (1986) 659-667.
    • (1986) Math. Comp. , vol.47 , Issue.176 , pp. 659-667
    • Bustoz, J.1    Ismail, M.E.H.2
  • 4
    • 0001462465 scopus 로고
    • A Bernstein-type inequality for the Jacobi polynomial
    • Y. Chow, L. Gatteschi, R. Wong, A Bernstein-type inequality for the Jacobi polynomial, Proc. Amer. Math. Soc. 121 (3) (1994) 703-709.
    • (1994) Proc. Amer. Math. Soc. , vol.121 , Issue.3 , pp. 703-709
    • Chow, Y.1    Gatteschi, L.2    Wong, R.3
  • 5
    • 21344482869 scopus 로고
    • An inequality for Legendre polynomials
    • A. Elbert, A. Laforgia, An inequality for Legendre polynomials, J. Math. Phys. 35 (3) (1994) 1348-1360 .
    • (1994) J. Math. Phys. , vol.35 , Issue.3 , pp. 1348-1360
    • Elbert, A.1    Laforgia, A.2
  • 6
    • 85171841264 scopus 로고
    • Some elementary inequalities relating to the gamma and incomplete gamma function
    • W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. Phys. 38 (1959) 77-81.
    • (1959) J. Math. Phys. , vol.38 , pp. 77-81
    • Gautschi, W.1
  • 8
    • 84966228652 scopus 로고
    • Some extensions of W. Gautschi's inequalities for the gamma function
    • D. Kershaw, Some extensions of W. Gautschi's inequalities for the gamma function, Math. Comp. 41 (164) (1983) 607-611.
    • (1983) Math. Comp. , vol.41 , Issue.164 , pp. 607-611
    • Kershaw, D.1
  • 9
    • 84966209797 scopus 로고
    • Further inequalities for the gamma function
    • A. Laforgia, Further inequalities for the gamma function, Math. Comp. 42 (166) (1984) 597-600.
    • (1984) Math. Comp. , vol.42 , Issue.166 , pp. 597-600
    • Laforgia, A.1
  • 10
    • 0002422392 scopus 로고
    • Inequalities for ultraspherical polynomials and the gamma function
    • L. Lorch, Inequalities for ultraspherical polynomials and the gamma function, J. Approx. Theory 40 (1984) 115-120.
    • (1984) J. Approx. Theory , vol.40 , pp. 115-120
    • Lorch, L.1
  • 11
    • 0032473251 scopus 로고    scopus 로고
    • A generalization of some inequalities for the gamma function
    • B. Palumbo, A generalization of some inequalities for the gamma function, J. Comput. Appl. Math. 88 (2) (1998) 255-268.
    • (1998) J. Comput. Appl. Math. , vol.88 , Issue.2 , pp. 255-268
    • Palumbo, B.1
  • 12
    • 0004073954 scopus 로고
    • Colloq. Publ., Amer. Math. Soc., Providence, RI
    • G. Szegö, Orthogonal Polynomials, 4th ed., Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI, 1975.
    • (1975) Orthogonal Polynomials, 4th Ed. , vol.23
    • Szegö, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.