-
1
-
-
0029271021
-
On a generalization of the Kalman-Yakubovich Lemma
-
A. V. BALAKRISHNAN, On a generalization of the Kalman-Yakubovich Lemma, Appl. Math. Optim., 31 (1995), pp. 177-187.
-
(1995)
Appl. Math. Optim.
, vol.31
, pp. 177-187
-
-
Balakrishnan, A.V.1
-
2
-
-
0007110376
-
On the solvability of matrix inequalities
-
A. N. CHURILOV, On the solvability of matrix inequalities, Mat. Zametki, 36 (1984), pp. 725-732.
-
(1984)
Mat. Zametki
, vol.36
, pp. 725-732
-
-
Churilov, A.N.1
-
4
-
-
0029727063
-
The Kalman-Yakubovich-Popov lemma for Pritchard-Salamon systems
-
R. F. CURTAIN, The Kalman-Yakubovich-Popov lemma for Pritchard-Salamon systems, Systems Control Lett., 27 (1996), pp. 67-72; Correction to the Kalman-Yakubovich-Popov lemma for Pritchard-Salamon systems, Systems Control Lett., 28 (1996), pp. 237-238.
-
(1996)
Systems Control Lett.
, vol.27
, pp. 67-72
-
-
Curtain, R.F.1
-
5
-
-
0029727063
-
Correction to the Kalman-Yakubovich-Popov lemma for Pritchard-Salamon systems
-
R. F. CURTAIN, The Kalman-Yakubovich-Popov lemma for Pritchard-Salamon systems, Systems Control Lett., 27 (1996), pp. 67-72; Correction to the Kalman-Yakubovich-Popov lemma for Pritchard-Salamon systems, Systems Control Lett., 28 (1996), pp. 237-238.
-
(1996)
Systems Control Lett.
, vol.28
, pp. 237-238
-
-
-
6
-
-
0023367278
-
Matrix Riccati inequality: Existence of solutions
-
L. E. FAIBUSOVICH, Matrix Riccati inequality: existence of solutions, Systems Control Lett., 9 (1987), pp. 59-64.
-
(1987)
Systems Control Lett.
, vol.9
, pp. 59-64
-
-
Faibusovich, L.E.1
-
9
-
-
0000302024
-
Lyapunov functions for the problem of Lur'e in automatic control
-
R. E. KALMAN, Lyapunov functions for the problem of Lur'e in automatic control, Proc. Nat. Acad. Sci. U.S.A., 49 (1963), pp. 201-205.
-
(1963)
Proc. Nat. Acad. Sci. U.S.A.
, vol.49
, pp. 201-205
-
-
Kalman, R.E.1
-
10
-
-
0003343097
-
Differential and Algebraic Riccati Equations with Applications to Boundary/Point Control Problems: Continuous Theory and Approximation Theory
-
Springer-Verlag, Berlin
-
I. LASIECKA AND R. TRIGGIANI, Differential and Algebraic Riccati Equations with Applications to Boundary/Point Control Problems: Continuous Theory and Approximation Theory, Lecture Notes in Control and Inform. Sci. 164, Springer-Verlag, Berlin, 1991.
-
(1991)
Lecture Notes in Control and Inform. Sci.
, vol.164
-
-
Lasiecka, I.1
Triggiani, R.2
-
11
-
-
0003083584
-
The regulator problem for parabolic equations with Diriclet boundary control. Part 1: Riccati's feedback synthesis and regularity of optimal solutions
-
I. LASIECKA AND R. TRIGGIANI, The regulator problem for parabolic equations with Diriclet boundary control. Part 1: Riccati's feedback synthesis and regularity of optimal solutions, Appl. Math. Optim., 16 (1987), pp. 147-168; Part 2: Galerkin approximation, Appl. Math. Optim., 16 (1987), pp. 187-216.
-
(1987)
Appl. Math. Optim.
, vol.16
, pp. 147-168
-
-
Lasiecka, I.1
Triggiani, R.2
-
12
-
-
0003083584
-
Part 2: Galerkin approximation
-
I. LASIECKA AND R. TRIGGIANI, The regulator problem for parabolic equations with Diriclet boundary control. Part 1: Riccati's feedback synthesis and regularity of optimal solutions, Appl. Math. Optim., 16 (1987), pp. 147-168; Part 2: Galerkin approximation, Appl. Math. Optim., 16 (1987), pp. 187-216.
-
(1987)
Appl. Math. Optim.
, vol.16
, pp. 187-216
-
-
-
13
-
-
21844520679
-
Input dynamics and nonstandard Riccati equations with applications to boundary control of damped wave and plate equations
-
I. LASIECKA, D. LUKES, AND L. PANDOLFI, Input dynamics and nonstandard Riccati equations with applications to boundary control of damped wave and plate equations, J. Optim. Theory Appl., 84 (1995), pp. 549-574.
-
(1995)
J. Optim. Theory Appl.
, vol.84
, pp. 549-574
-
-
Lasiecka, I.1
Lukes, D.2
Pandolfi, L.3
-
14
-
-
0031185425
-
A singular control approach to highly damped second-order abstract equations and applications
-
I. LASIECKA, L. PANDOLFI, AND R. TRIGGIANI, A singular control approach to highly damped second-order abstract equations and applications, Appl. Math. Optim., 36 (1997), pp. 67-107.
-
(1997)
Appl. Math. Optim.
, vol.36
, pp. 67-107
-
-
Lasiecka, I.1
Pandolfi, L.2
Triggiani, R.3
-
15
-
-
0346595829
-
The frequency theorem for equation of evolutionary type
-
A. L. LIKHTARNIKOV AND V. A. YAKUBOVICH, The frequency theorem for equation of evolutionary type, Siberian Math. J., 17 (1976), pp. 1069-1085.
-
(1976)
Siberian Math. J.
, vol.17
, pp. 1069-1085
-
-
Likhtarnikov, A.L.1
Yakubovich, V.A.2
-
16
-
-
0001099420
-
The Hilbert space regulator problem and operator Riccati equation under stabilizability
-
J.-CL. LOUIS AND D. WEXLER, The Hilbert space regulator problem and operator Riccati equation under stabilizability, Ann. Soc. Sci. Bruxelles Sér. I, 105 (1991), pp. 137-165.
-
(1991)
Ann. Soc. Sci. Bruxelles Sér. I
, vol.105
, pp. 137-165
-
-
Louis, J.-C.L.1
Wexler, D.2
-
17
-
-
38249024353
-
Some properties of the frequency domain description of boundary control systems
-
L. PANDOLFI, Some properties of the frequency domain description of boundary control systems, J. Math. Anal. Appl., 142 (1989), pp. 219-241.
-
(1989)
J. Math. Anal. Appl.
, vol.142
, pp. 219-241
-
-
Pandolfi, L.1
-
18
-
-
0025214729
-
Generalized control systems, boundary control systems, and delayed control systems
-
L. PANDOLFI, Generalized control systems, boundary control systems, and delayed control systems, Math. Control Signals Systems, 3 (1990), pp. 165-181.
-
(1990)
Math. Control Signals Systems
, vol.3
, pp. 165-181
-
-
Pandolfi, L.1
-
19
-
-
1542729177
-
From singular to regular control systems
-
G. Da Prato and M. Tubaro, eds., Marcel Dekker, New York
-
L. PANDOLFI, From singular to regular control systems, in Control of Partial Differential Equations, G. Da Prato and M. Tubaro, eds., Marcel Dekker, New York, 1994, pp. 153-165.
-
(1994)
Control of Partial Differential Equations
, pp. 153-165
-
-
Pandolfi, L.1
-
20
-
-
0029277301
-
The standard regulator problem for systems with input delays: An approach through singular control theory
-
L. PANDOLFI, The standard regulator problem for systems with input delays: An approach through singular control theory, Appl. Math. Optim., 31 (1995), pp. 119-136.
-
(1995)
Appl. Math. Optim.
, vol.31
, pp. 119-136
-
-
Pandolfi, L.1
-
21
-
-
0006802356
-
The Kalman-Yakubovich-Popov theorem: An overview and new results for hyperbolic control systems
-
L. PANDOLFI, The Kalman-Yakubovich-Popov theorem: An overview and new results for hyperbolic control systems, Nonlinear Anal., 30 (1997), pp. 735-745.
-
(1997)
Nonlinear Anal.
, vol.30
, pp. 735-745
-
-
Pandolfi, L.1
-
22
-
-
85034485159
-
The Kalman-Yakubovich-Popov theorem for stabilizable hyperbolic boundary control systems
-
to appear
-
L. PANDOLFI, The Kalman-Yakubovich-Popov theorem for stabilizable hyperbolic boundary control systems, Integral Equations Operator Theory, to appear.
-
Integral Equations Operator Theory
-
-
Pandolfi, L.1
-
25
-
-
0000771130
-
Solution of certain matrix inequalities occurring in control theory
-
V. A. YAKUBOVICH, Solution of certain matrix inequalities occurring in control theory, Dokl. Akad. Nauk USSR, 143 (1962), pp. 1304-1307.
-
(1962)
Dokl. Akad. Nauk USSR
, vol.143
, pp. 1304-1307
-
-
Yakubovich, V.A.1
-
26
-
-
0000442856
-
The frequency theorem in control theory
-
V.A. YAKUBOVICH, The frequency theorem in control theory, Siberian Math. J., 14 (1973), pp. 384-419.
-
(1973)
Siberian Math. J.
, vol.14
, pp. 384-419
-
-
Yakubovich, V.A.1
-
27
-
-
0000587092
-
A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an applications to some problems in the synthesis of optimal controls. Part I
-
V. A. YAKUBOVICH, A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an applications to some problems in the synthesis of optimal controls. Part I, Siberian Math. J., 15 (1974), pp. 457-476; Part II, Siberian Math. J., 16 (1975), pp. 828-845.
-
(1974)
Siberian Math. J.
, vol.15
, pp. 457-476
-
-
Yakubovich, V.A.1
-
28
-
-
0001250872
-
A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an applications to some problems in the synthesis of optimal controls. Part II
-
V. A. YAKUBOVICH, A frequency theorem for the case in which the state and control spaces are Hilbert spaces with an applications to some problems in the synthesis of optimal controls. Part I, Siberian Math. J., 15 (1974), pp. 457-476; Part II, Siberian Math. J., 16 (1975), pp. 828-845.
-
(1975)
Siberian Math. J.
, vol.16
, pp. 828-845
-
-
|