메뉴 건너뛰기




Volumn 36, Issue 10-12, 1998, Pages 71-76

Structural stability of linear difference equations in Hilbert space

Author keywords

Exponential dichotomy; Linear difference equations; Structural stability

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; THEOREM PROVING;

EID: 0032205555     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0898-1221(98)80010-2     Document Type: Article
Times cited : (2)

References (4)
  • 1
    • 0002458024 scopus 로고
    • Structural stability of linear discrete systems via the exponential dichotomy
    • J. Kurzweil and G. Papaschinopoulos, Structural stability of linear discrete systems via the exponential dichotomy, Czech. Math. J. 38, 280-284 (1988).
    • (1988) Czech. Math. J. , vol.38 , pp. 280-284
    • Kurzweil, J.1    Papaschinopoulos, G.2
  • 2
    • 0002457840 scopus 로고
    • A characterization of exponential dichotomy in terms of topological equivalence
    • K. Palmer, A characterization of exponential dichotomy in terms of topological equivalence, J. Math. Anal. Appl. 69, 8-16 (1979).
    • (1979) J. Math. Anal. Appl. , vol.69 , pp. 8-16
    • Palmer, K.1
  • 3
    • 0002370561 scopus 로고
    • The structurally stable linear systems on the half-line are those with exponential dichotomies
    • K. Palmer, The structurally stable linear systems on the half-line are those with exponential dichotomies, J. Diff. Eqns. 33, 16-25 (1979).
    • (1979) J. Diff. Eqns. , vol.33 , pp. 16-25
    • Palmer, K.1
  • 4
    • 0002756997 scopus 로고
    • The concept of spectral dichotomy for linear difference equations
    • B. Aulbach, N. Van Minh and P.P. Zabreiko, The concept of spectral dichotomy for linear difference equations, J. Math. Anal. Appl. 185, 275-287 (1994).
    • (1994) J. Math. Anal. Appl. , vol.185 , pp. 275-287
    • Aulbach, B.1    Van Minh, N.2    Zabreiko, P.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.