-
1
-
-
0002066826
-
Circular Bernstein-Bézier polynomials
-
Dæhlen, M., Lyche, T. and Schumaker, L.L., eds., Vanderbilt University Press, Nashville
-
Alfeld, P., Neamtu, M. and Schumaker, L.L. (1995), Circular Bernstein-Bézier polynomials, in: Dæhlen, M., Lyche, T. and Schumaker, L.L., eds., Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, Nashville, 11-20.
-
(1995)
Mathematical Methods for Curves and Surfaces
, pp. 11-20
-
-
Alfeld, P.1
Neamtu, M.2
Schumaker, L.L.3
-
2
-
-
0028736414
-
Totally positive bases for shape preserving curve design and optimality of B-splines
-
Carnicer, J.M. and Peña, J.M. (1994), Totally positive bases for shape preserving curve design and optimality of B-splines, Computer Aided Geometric Design 11, 633-654.
-
(1994)
Computer Aided Geometric Design
, vol.11
, pp. 633-654
-
-
Carnicer, J.M.1
Peña, J.M.2
-
3
-
-
0002266601
-
Spline curves in cartesian and polar coordinates
-
Le Méhauté, A.L, Rabut, C. and Schumaker, L.L., eds., Vanderbilt University Press, Nashville
-
Casciola, G. and Morigi, S. (1997), Spline curves in cartesian and polar coordinates, in: Le Méhauté, A.L, Rabut, C. and Schumaker, L.L., eds., Curves and Surfaces with Applications in CAGD, Vanderbilt University Press, Nashville, 61-68.
-
(1997)
Curves and Surfaces with Applications in CAGD
, pp. 61-68
-
-
Casciola, G.1
Morigi, S.2
-
4
-
-
0032046153
-
Degree-elevation for p-Bézier curves
-
Casciola, G., Morigi, S. and Sánchez-Reyes, J. (1998), Degree-elevation for p-Bézier curves, Computer Aided Geometric Design 15, 313-322.
-
(1998)
Computer Aided Geometric Design
, vol.15
, pp. 313-322
-
-
Casciola, G.1
Morigi, S.2
Sánchez-Reyes, J.3
-
5
-
-
0001784408
-
Splines focales
-
Laurent, P.J., Le Méhauté, A.L. and Schumaker, L.L., eds., A K Peters, Wellesley, MA
-
de Casteljau, P. (1994), Splines focales, in: Laurent, P.J., Le Méhauté, A.L. and Schumaker, L.L., eds., Curves and Surfaces in Geometric Design, A K Peters, Wellesley, MA, 91-103.
-
(1994)
Curves and Surfaces in Geometric Design
, pp. 91-103
-
-
De Casteljau, P.1
-
7
-
-
0031121893
-
Low-harnionic rational Bézier curves for trajectory generation of high-speed machinery
-
Ge, Q.J., Srinivasan, L. and Rastegar, J. (1997), Low-harnionic rational Bézier curves for trajectory generation of high-speed machinery, Computer Aided Geometric Design 14, 251-271.
-
(1997)
Computer Aided Geometric Design
, vol.14
, pp. 251-271
-
-
Ge, Q.J.1
Srinivasan, L.2
Rastegar, J.3
-
8
-
-
0000770746
-
B-spline on the circle and trigonometric B-splines
-
Singh, S.P. et al., eds., Reidel D. Publishing Company
-
Goodman, T.N.T. and Lee, S.L. (1984), B-spline on the circle and trigonometric B-splines, in: Singh, S.P. et al., eds., Approximation Theory and Spline Function, Reidel D. Publishing Company, 297-325.
-
(1984)
Approximation Theory and Spline Function
, pp. 297-325
-
-
Goodman, T.N.T.1
Lee, S.L.2
-
9
-
-
0000950747
-
Control curves and knot insertion for trigonometric B-splines
-
Koch, P.E., Lyche, T., Neamtu, M. and Schumaker, L.L. (1995), Control curves and knot insertion for trigonometric B-splines, Adv. Comput. Math. 3, 405-424.
-
(1995)
Adv. Comput. Math.
, vol.3
, pp. 405-424
-
-
Koch, P.E.1
Lyche, T.2
Neamtu, M.3
Schumaker, L.L.4
-
10
-
-
0001023532
-
A stable recurrence relation for trigonometric B-splines
-
Lyche, T. and Winther, R. (1979), A stable recurrence relation for trigonometric B-splines, Journal of Approximation Theory 25, 266-279.
-
(1979)
Journal of Approximation Theory
, vol.25
, pp. 266-279
-
-
Lyche, T.1
Winther, R.2
-
11
-
-
0008535106
-
Homogeneous splines and rational curves with rational offsets
-
Institut für Geometrie, Technische Universität Wien
-
Neamtu, N., Pottmann, H. and Schumaker, L.L. (1996), Homogeneous splines and rational curves with rational offsets, Technical Report No. 29, Institut für Geometrie, Technische Universität Wien.
-
(1996)
Technical Report No. 29
, vol.29
-
-
Neamtu, N.1
Pottmann, H.2
Schumaker, L.L.3
-
12
-
-
0030737321
-
Shape preserving representations for trigonometric polynomial curves
-
Peña, J.M. (1997), Shape preserving representations for trigonometric polynomial curves, Computer Aided Geometric Design 14, 5-11.
-
(1997)
Computer Aided Geometric Design
, vol.14
, pp. 5-11
-
-
Peña, J.M.1
-
13
-
-
0347374387
-
Geometric methods for computer-aided design
-
Piegl, L., ed., Academic Press, London
-
Pratt, D.F. (1993), Geometric methods for computer-aided design, in: Piegl, L., ed., Fundamental Developments of Computer Aided Geometric Design, Academic Press, London, 271-319.
-
(1993)
Fundamental Developments of Computer Aided Geometric Design
, pp. 271-319
-
-
Pratt, D.F.1
-
14
-
-
0025228208
-
Single-valued curves in polar coordinates
-
Sánchez-Reyes, J. (1990), Single-valued curves in polar coordinates, Computer-Aided Design 22, 19-26.
-
(1990)
Computer-Aided Design
, vol.22
, pp. 19-26
-
-
Sánchez-Reyes, J.1
-
15
-
-
0001474157
-
Single-valued spline curves in polar coordinates
-
Sánchez-Reyes, J. (1992), Single-valued spline curves in polar coordinates, Computer-Aided Design 24, 307-315.
-
(1992)
Computer-Aided Design
, vol.24
, pp. 307-315
-
-
Sánchez-Reyes, J.1
-
16
-
-
0028517502
-
Single-valued surfaces in spherical coordinates
-
Sánchez-Reyes, J. (1994a), Single-valued surfaces in spherical coordinates, Computer Aided Geometric Design 11, 491-517.
-
(1994)
Computer Aided Geometric Design
, vol.11
, pp. 491-517
-
-
Sánchez-Reyes, J.1
-
18
-
-
0029292889
-
Quasi-nonparametric surfaces
-
Sánchez-Reyes, J. (1995), Quasi-nonparametric surfaces, Computer Aided Design 27, 263-275.
-
(1995)
Computer Aided Design
, vol.27
, pp. 263-275
-
-
Sánchez-Reyes, J.1
-
19
-
-
18144436167
-
Higher-order Bézier circles
-
Sánchez-Reyes, J. (1997), Higher-order Bézier circles, Computer-Aided Design 29, 469-472.
-
(1997)
Computer-Aided Design
, vol.29
, pp. 469-472
-
-
Sánchez-Reyes, J.1
-
21
-
-
0642272347
-
Identities for trigonometric B-splines with an application to curve design
-
Walz, G. (1997), Identities for trigonometric B-splines with an application to curve design, BIT 37, 189-201.
-
(1997)
BIT
, vol.37
, pp. 189-201
-
-
Walz, G.1
|