메뉴 건너뛰기




Volumn 58, Issue 5, 1998, Pages 1365-1393

A numerical study of riemann problems for the two-dimensional unsteady transonic small disturbance equation

Author keywords

Essentially nonoscillatory numerical scheme; Two dimensional riemann problems; Unsteady transonic small disturbance equation

Indexed keywords

MATHEMATICAL MODELS; NUMERICAL METHODS; PROBLEM SOLVING;

EID: 0032186837     PISSN: 00361399     EISSN: None     Source Type: Journal    
DOI: 10.1137/s003613999730884x     Document Type: Article
Times cited : (6)

References (4)
  • 2
    • 33845298703 scopus 로고
    • Mach reflection for the two dimensional Burgers equation
    • M. BRIO AND J. K. HUNTER, Mach reflection for the two dimensional Burgers equation, Phys. D, 60 (1992), pp. 194-207.
    • (1992) Phys. D , vol.60 , pp. 194-207
    • Brio, M.1    Hunter, J.K.2
  • 3
    • 0030099673 scopus 로고    scopus 로고
    • An elliptic problem arising from the unsteady transonic small disturbance equation
    • S. ČANIĆ AND B. L. KEVFITZ, An elliptic problem arising from the unsteady transonic small disturbance equation, J. Differential Equations, 125 (1996), pp. 548-574.
    • (1996) J. Differential Equations , vol.125 , pp. 548-574
    • Čanić, S.1    Kevfitz, B.L.2
  • 4
    • 25444487566 scopus 로고    scopus 로고
    • Shock Waves, B. Sturtevant, J. E. Schepherd, and H. G. Hornung, eds., World Scientific, Singapore
    • S. ČANIĆ AND B. L. KEYFITZ, Oblique shock interactions and the von Neumann paradox, in Shock Waves, B. Sturtevant, J. E. Schepherd, and H. G. Hornung, eds., World Scientific, Singapore, 1996, pp. 435-440.
    • (1996) Oblique Shock Interactions and the Von Neumann Paradox , pp. 435-440
    • Čanić, S.1    Keyfitz, B.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.