메뉴 건너뛰기




Volumn 34, Issue 1, 1998, Pages 87-99

Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces

Author keywords

Asymptotically nonexpansive semigroup; Iteration; Mean; Strong convergence

Indexed keywords

APPROXIMATION THEORY; ASYMPTOTIC STABILITY; CONFORMAL MAPPING; ITERATIVE METHODS; SET THEORY; THEOREM PROVING;

EID: 0032186802     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(97)00682-2     Document Type: Article
Times cited : (90)

References (11)
  • 1
    • 0000983980 scopus 로고
    • Un théorème de type ergodic pour les contractions non linéares dans un espace de Hilbert, C. r. hebd
    • J.B. Baillon, Un théorème de type ergodic pour les contractions non linéares dans un espace de Hilbert, C. r. hebd. Séanc. Acad. Sci. Paris 280 (1975) 1511-1514.
    • (1975) Séanc. Acad. Sci. Paris , vol.280 , pp. 1511-1514
    • Baillon, J.B.1
  • 3
    • 0002728205 scopus 로고
    • Convergence of approximants to fixed points of non-expansive non-linear mappings in Banach spaces
    • F.E. Browder, Convergence of approximants to fixed points of non-expansive non-linear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967) 82-90.
    • (1967) Arch. Rational Mech. Anal. , vol.24 , pp. 82-90
    • Browder, F.E.1
  • 4
    • 84968518807 scopus 로고
    • A fixed point theorem for asymptotically nonexpansive mappings
    • K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc. 35 (1972) 171-174.
    • (1972) Proc. Am. Math. Soc. , vol.35 , pp. 171-174
    • Goebel, K.1    Kirk, W.A.2
  • 5
    • 33646986315 scopus 로고
    • Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces
    • N. Hirano, K. Kido, W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal. 12 (1988) 1269-1281.
    • (1988) Nonlinear Anal. , vol.12 , pp. 1269-1281
    • Hirano, N.1    Kido, K.2    Takahashi, W.3
  • 6
    • 0001423268 scopus 로고
    • An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space
    • G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl. 85 (1982) 172-178.
    • (1982) J. Math. Anal. Appl. , vol.85 , pp. 172-178
    • Rodé, G.1
  • 7
    • 0009113910 scopus 로고    scopus 로고
    • Strong convergence theorem for asymptotically nonexpansive mappings
    • T. Shimizu, W. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal. 26 (1996) 265-272.
    • (1996) Nonlinear Anal. , vol.26 , pp. 265-272
    • Shimizu, T.1    Takahashi, W.2
  • 8
    • 0031172967 scopus 로고    scopus 로고
    • Strong convergence to common fixed points of families of nonexpansive mappings
    • T. Shimizu, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997) 71-83.
    • (1997) J. Math. Anal. Appl. , vol.211 , pp. 71-83
    • Shimizu, T.1    Takahashi, W.2
  • 9
    • 84968476230 scopus 로고
    • A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space
    • W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Am. Math. Soc. 81 (1981) 253-256.
    • (1981) Proc. Am. Math. Soc. , vol.81 , pp. 253-256
    • Takahashi, W.1
  • 10
    • 0001025194 scopus 로고
    • Fixed point theorem and nonlinear ergodic theorem for nonexpansive semigroups without convexity
    • W. Takahashi, Fixed point theorem and nonlinear ergodic theorem for nonexpansive semigroups without convexity, Canadian J. Math. 44 (1992) 880-887.
    • (1992) Canadian J. Math. , vol.44 , pp. 880-887
    • Takahashi, W.1
  • 11
    • 0001682125 scopus 로고
    • Approximation of fixed points of nonexpansive mappings
    • R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491.
    • (1992) Arch. Math. , vol.58 , pp. 486-491
    • Wittmann, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.