메뉴 건너뛰기




Volumn 30, Issue 4, 1998, Pages 297-311

A finite element method for contact/impact

Author keywords

Contact impact; Differential algebraic equations; Finite element method; Time integration

Indexed keywords

DIFFERENTIAL EQUATIONS; ENERGY DISSIPATION; INTERFACES (MATERIALS);

EID: 0032181536     PISSN: 0168874X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0168-874X(98)00041-9     Document Type: Article
Times cited : (31)

References (7)
  • 2
    • 0027606615 scopus 로고
    • On a finite element method for dynamic contact/impact problems
    • R.L. Taylor, P. Papadopoulos, On a finite element method for dynamic contact/impact problems, Internet. J. Numer. Methods. Engrg. 36 (1993) 2123-2140.
    • (1993) Internet. J. Numer. Methods. Engrg. , vol.36 , pp. 2123-2140
    • Taylor, R.L.1    Papadopoulos, P.2
  • 3
    • 0026939543 scopus 로고
    • Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics
    • J.C. Simo, N. Tarnow, K.K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics, Comput. Methods. Appl. Mech. Engrg. 100 (1992) 63-116.
    • (1992) Comput. Methods. Appl. Mech. Engrg. , vol.100 , pp. 63-116
    • Simo, J.C.1    Tarnow, N.2    Wong, K.K.3
  • 4
    • 0000583007 scopus 로고
    • Numerical solution of differential-algebraic equations for constrained mechanical motion
    • C. Fuhrer, B.J. Leimkuhler, Numerical solution of differential-algebraic equations for constrained mechanical motion, Numer. Math. 59 (1991) 55-69.
    • (1991) Numer. Math. , vol.59 , pp. 55-69
    • Fuhrer, C.1    Leimkuhler, B.J.2
  • 7
    • 21844476134 scopus 로고    scopus 로고
    • A Lagrange multiplier method for the finite element solution of frictionless contact problems
    • to appear
    • P. Papadopoulos, J. Solberg, A Lagrange multiplier method for the finite element solution of frictionless contact problems, Math. Comput. Modelling, to appear.
    • Math. Comput. Modelling
    • Papadopoulos, P.1    Solberg, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.