메뉴 건너뛰기




Volumn 9, Issue 5, 1998, Pages 913-936

Noisy recurrent neural networks: The continuous-time case

Author keywords

Noise; Nonlinear control and identification; Recurrent neural networks; Stochastic dynamical systems; Trajectory learning

Indexed keywords

IDENTIFICATION (CONTROL SYSTEMS); LEARNING SYSTEMS; MATHEMATICAL MODELS; NONLINEAR CONTROL SYSTEMS; RANDOM PROCESSES; SPURIOUS SIGNAL NOISE;

EID: 0032164439     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.712164     Document Type: Article
Times cited : (23)

References (44)
  • 1
    • 0032162942 scopus 로고    scopus 로고
    • Noisy Recurrent Neural Networks: The discrete-time case
    • O. Olurotimi and S. Das, "Noisy Recurrent Neural Networks: The discrete-time case," IEEE Trans. Neural Networks, vol. 9, pp. XXX, 1998.
    • (1998) IEEE Trans. Neural Networks , vol.9
    • Olurotimi, O.1    Das, S.2
  • 2
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 3
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • _, "Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks," Neural Networks, vol. 3, pp. 551-560, 1990.
    • (1990) Neural Networks , vol.3 , pp. 551-560
  • 4
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous-time RNN's
    • K.-I. Funahashi and Y. Nakamura, "Approximation of dynamical systems by continuous-time RNN's," Neural Networks, vol. 6, pp. 801-806, 1993.
    • (1993) Neural Networks , vol.6 , pp. 801-806
    • Funahashi, K.-I.1    Nakamura, Y.2
  • 5
    • 33747726235 scopus 로고
    • NIPS'95 workshop: Neural networks for signal processing
    • Dec.
    • "NIPS'95 workshop: Neural networks for signal processing," in Advances in Neural Information Processing Syst. 7, Dec. 1995.
    • (1995) Advances in Neural Information Processing Syst. , vol.7
  • 6
    • 0026626377 scopus 로고
    • Comparison of four neural net learning methods for dynamic system identification
    • Jan.
    • S.-Z. Qin, H.-T. Su, and T. J. McAvoy, "Comparison of four neural net learning methods for dynamic system identification," IEEE Trans. Neural Networks, vol. 3, pp. 122-130, Jan. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 122-130
    • Qin, S.-Z.1    Su, H.-T.2    McAvoy, T.J.3
  • 7
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee, "Learning and extracting finite state automata with second-order recurrent neural networks," Neural Comput., vol. 4, pp. 393-405, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 8
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • P. J. Werbos, "Generalization of backpropagation with application to a recurrent gas market model," Neural Networks, vol. 1, pp. 339-356, 1988.
    • (1988) Neural Networks , vol.1 , pp. 339-356
    • Werbos, P.J.1
  • 9
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, pp. 270-280, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 10
    • 0001414608 scopus 로고
    • Generalization of backpropagation to recurrent and higher order neural networks
    • D. Z. Anderson, Ed. New York: Amer. Inst. Phys.
    • F. J. Pineda, "Generalization of backpropagation to recurrent and higher order neural networks," in Neural Inform. Processing Syst., D. Z. Anderson, Ed. New York: Amer. Inst. Phys., 1988, pp. 602-611.
    • (1988) Neural Inform. Processing Syst. , pp. 602-611
    • Pineda, F.J.1
  • 11
    • 0001202597 scopus 로고
    • Learning state-space trajectories in recurrent neural networks
    • B. A. Pearlmutter, "Learning state-space trajectories in recurrent neural networks," Neural Comput., vol. 1, pp. 263-269, 1989.
    • (1989) Neural Comput. , vol.1 , pp. 263-269
    • Pearlmutter, B.A.1
  • 12
    • 0026685372 scopus 로고
    • Learning a trajectory using adjoint functions and teacher forcing
    • N. B. Toomarian and J. Barhen, "Learning a trajectory using adjoint functions and teacher forcing," Neural Networks, vol. 5, pp. 473-484, 1992.
    • (1992) Neural Networks , vol.5 , pp. 473-484
    • Toomarian, N.B.1    Barhen, J.2
  • 13
    • 0028400379 scopus 로고
    • RNN training with feedforward complexity
    • Mar.
    • O. Olurotimi, "RNN training with feedforward complexity," IEEE Trans. Neural Networks, vol. 5, pp. 185-197, Mar. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 185-197
    • Olurotimi, O.1
  • 14
    • 0028543249 scopus 로고
    • Hopfield net generation, encoding and classification of temporal trajectories
    • Nov.
    • H. Bersini, M. Saerens, and L. G. Sotelino, "Hopfield net generation, encoding and classification of temporal trajectories," IEEE Trans. Neural Networks, vol. 5, pp. 945-953, Nov. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 945-953
    • Bersini, H.1    Saerens, M.2    Sotelino, L.G.3
  • 15
    • 85153946564 scopus 로고
    • Effects of noise on convergence and generalization in recurrent networks
    • San Mateo, CA: Morgan Kaufmann
    • K. Jim, B. G. Horne, and C. L. Giles, "Effects of noise on convergence and generalization in recurrent networks," in Advances in Neural Inform. Processing Syst. 7. San Mateo, CA: Morgan Kaufmann, 1995, pp. 649-656.
    • (1995) In Advances in Neural Inform. Processing Syst. 7 , pp. 649-656
    • Jim, K.1    Horne, B.G.2    Giles, C.L.3
  • 16
    • 0029306953 scopus 로고
    • Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter
    • May
    • R. Reed, R. J. Marks, II, and S. Oh, "Similarities of error regularization, sigmoid gain scaling, target smoothing, and training with jitter," IEEE Trans. Neural Networks, vol. 6, pp. 529-538, May 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 529-538
    • Reed, R.1    Marks II, R.J.2    Oh, S.3
  • 17
    • 33747706460 scopus 로고
    • Stochastic neural networks
    • E. Wong, "Stochastic neural networks," Algorithmica, vol. 6, pp. 466-478, 1992.
    • (1992) Algorithmica , vol.6 , pp. 466-478
    • Wong, E.1
  • 18
    • 0027553028 scopus 로고
    • Computing association probabilities using parallel Boltzmann machines
    • Mar.
    • R. A. Iltis and P.-Y. Ting, "Computing association probabilities using parallel Boltzmann machines," IEEE Trans. Neural Networks, vol. 4, pp. 221-233, Mar. 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 221-233
    • Iltis, R.A.1    Ting, P.-Y.2
  • 20
    • 33747691390 scopus 로고
    • An analog diffusion network architecture for solving data association problems in multitarget tracking
    • Apr.
    • P.-Y. Ting and R. A. Iltis, "An analog diffusion network architecture for solving data association problems in multitarget tracking," SPIE Proc., vol. 1709, pp. 326-337, Apr. 1992.
    • (1992) SPIE Proc. , vol.1709 , pp. 326-337
    • Ting, P.-Y.1    Iltis, R.A.2
  • 21
    • 33747693480 scopus 로고    scopus 로고
    • Synaptic noise in dynamically-driven recurrent neural networks: Convergence and generalization
    • to appear
    • K. Jim, C. L. Giles, and B. G. Home, "Synaptic noise in dynamically-driven recurrent neural networks: Convergence and generalization," IEEE Trans. Neural Networks, to appear.
    • IEEE Trans. Neural Networks
    • Jim, K.1    Giles, C.L.2    Home, B.G.3
  • 22
    • 0025401954 scopus 로고
    • Unsupervised learning in noise
    • Mar.
    • B. Kosko, "Unsupervised learning in noise," IEEE Trans. Neural Networks, vol. 1, pp. 44-57, Mar. 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 44-57
    • Kosko, B.1
  • 23
    • 0026186550 scopus 로고
    • Structural stability of unsupervised learning in feedback neural networks
    • July
    • _, "Structural stability of unsupervised learning in feedback neural networks," IEEE Trans. Automat. Contr., vol. 36, pp. 785-792, July 1991.
    • (1991) IEEE Trans. Automat. Contr. , vol.36 , pp. 785-792
  • 24
    • 0027541618 scopus 로고
    • A counter example in stochastic stability of feedback neural networks
    • Feb.
    • D. A. Castanon, "A counter example in stochastic stability of feedback neural networks," IEEE Trans. Automat. Contr., vol. 38, pp. 378-380, Feb. 1993.
    • (1993) IEEE Trans. Automat. Contr. , vol.38 , pp. 378-380
    • Castanon, D.A.1
  • 26
    • 0028464634 scopus 로고
    • Filtering, prediction, and learning properties of ECE neural networks
    • July
    • E. B. Kosmatopoulos and M. A. Christodoulou, "Filtering, prediction, and learning properties of ECE neural networks," IEEE Trans. Syst., Man, Cybern., vol. 34, pp. 971-981, July 1994.
    • (1994) IEEE Trans. Syst., Man, Cybern. , vol.34 , pp. 971-981
    • Kosmatopoulos, E.B.1    Christodoulou, M.A.2
  • 27
    • 0029376281 scopus 로고
    • Structural properties of gradient recurrent high-order neural networks
    • Sept.
    • E. B. Kosmatopoulos and M. A. Christodoulou, "Structural properties of gradient recurrent high-order neural networks," IEEE Trans. Circuits Syst. II, vol. 42, pp. 592-603, Sept. 1995.
    • (1995) IEEE Trans. Circuits Syst. II , vol.42 , pp. 592-603
    • Kosmatopoulos, E.B.1    Christodoulou, M.A.2
  • 29
    • 40649128119 scopus 로고
    • Nonlinear neural networks: Principles, mechanisms, and architectures
    • S. Grossberg, "Nonlinear neural networks: Principles, mechanisms, and architectures," Neural Networks, vol. 1, pp. 17-61, 1988.
    • (1988) Neural Networks , vol.1 , pp. 17-61
    • Grossberg, S.1
  • 32
    • 0020970741 scopus 로고
    • Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
    • M. A. Cohen and S. Grossberg, "Absolute stability of global pattern formation and parallel memory storage by competitive neural networks," IEEE Trans. Syst., Man, Cybern, vol. SMC-13, pp. 815-826, 1983.
    • (1983) IEEE Trans. Syst., Man, Cybern , vol.SMC-13 , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 35
    • 0004178386 scopus 로고    scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall, Inc.
    • H. Khalil, Nonlinear Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1996.
    • (1996) Nonlinear Systems
    • Khalil, H.1
  • 36
    • 0003728020 scopus 로고    scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • W. J. Rugh, Linear System Theory. Englewood Cliffs, NJ: Prentice-Hall, 1996.
    • (1996) Linear System Theory
    • Rugh, W.J.1
  • 37
    • 0003792312 scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
    • (1980) Linear Systems
    • Kailath, T.1
  • 42
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • Sept.
    • B. A. Pearlmutter, "Gradient calculations for dynamic recurrent neural networks: A survey," IEEE Trans. Neural Networks, vol. 6, pp. 1212-1228, Sept. 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 43
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Mar.
    • K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 4-27, Mar. 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 44
    • 6244252711 scopus 로고
    • Temporally continuous vs. clocked networks
    • K. Goldberg and G. A. Bekey, Eds. Boston, MA: Kluwer
    • B. A. Pearlmutter, "Temporally continuous vs. clocked networks," in Neural Networks in Robotics, K. Goldberg and G. A. Bekey, Eds. Boston, MA: Kluwer, 1992, pp. 237-252.
    • (1992) Neural Networks in Robotics , pp. 237-252
    • Pearlmutter, B.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.