메뉴 건너뛰기




Volumn 36, Issue 6, 1998, Pages 41-52

The M/M/c retrial queue with geometric loss and feedback

Author keywords

Feedback retrial queue; Geometric loss; Method of series solution

Indexed keywords

DIFFERENTIAL EQUATIONS; FUNCTIONS; GEOMETRY; MATHEMATICAL MODELS; PROBABILITY; PROBLEM SOLVING;

EID: 0032164216     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0898-1221(98)00160-6     Document Type: Article
Times cited : (58)

References (11)
  • 1
    • 34249959569 scopus 로고
    • A survey of retrial queue
    • G.I. Falin, A survey of retrial queue, Queueing Systems 7, 127-168 (1990).
    • (1990) Queueing Systems , vol.7 , pp. 127-168
    • Falin, G.I.1
  • 4
    • 0003059180 scopus 로고
    • The M/G/1 retrial queue with Bernoulli
    • B.D. Choi and K.K. Park, The M/G/1 retrial queue with Bernoulli, Schedule Queueing Systems 7, 219-228 (1990).
    • (1990) Schedule Queueing Systems , vol.7 , pp. 219-228
    • Choi, B.D.1    Park, K.K.2
  • 5
    • 0018523039 scopus 로고
    • New results in the theory of repeated orders queueing system
    • Q.H. Choo and B. Conolly, New results in the theory of repeated orders queueing system, J. Appl. Prob. 16 (3), 631-640 (1979).
    • (1979) J. Appl. Prob. , vol.16 , Issue.3 , pp. 631-640
    • Choo, Q.H.1    Conolly, B.2
  • 6
    • 0043051402 scopus 로고
    • The M/G/1 retrial queue with nonpersistent customers
    • T. Yang, M.J.M. Posner and J.G.C. Templeton, The M/G/1 retrial queue with nonpersistent customers, Queueing Systems 7, 209-218 (1990).
    • (1990) Queueing Systems , vol.7 , pp. 209-218
    • Yang, T.1    Posner, M.J.M.2    Templeton, J.G.C.3
  • 10
    • 0023357657 scopus 로고
    • Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts
    • T. Hanschke, Explicit formulas for the characteristics of the M/M/2/2 queue with repeated attempts, J. Appl. Prob. 24, 486-497 (1987).
    • (1987) J. Appl. Prob. , vol.24 , pp. 486-497
    • Hanschke, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.