-
1
-
-
0003738691
-
-
G. Beylkin et al., Eds., Cambridge, U.K.: Jones and Bartlett
-
G. Beylkin et al., Eds., Wavelets and Their Applications. Cambridge, U.K.: Jones and Bartlett, 1992.
-
(1992)
Wavelets and Their Applications
-
-
-
3
-
-
0025482241
-
The wavelet transform, time-frequency localization and signal analysis
-
I. Daubechies, "The wavelet transform, time-frequency localization and signal analysis," IEEE Trans. Inform. Theory, vol. 36, pp. 961-1005, 1990.
-
(1990)
IEEE Trans. Inform. Theory
, vol.36
, pp. 961-1005
-
-
Daubechies, I.1
-
6
-
-
0026628466
-
Wavelet analysis and synthesis of fractional Brownian motion
-
P. Flandrin, "Wavelet analysis and synthesis of fractional Brownian motion," IEEE Trans. Inform. Theory, vol. 38, pp. 910-917, 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 910-917
-
-
Flandrin, P.1
-
7
-
-
0026403091
-
A comparison of wavelet functions for pitch detection of speech signals
-
S. Kandambe and G. F. Boudreaux-Bartels, "A comparison of wavelet functions for pitch detection of speech signals," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 1991, pp. 449-452.
-
(1991)
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing
, pp. 449-452
-
-
Kandambe, S.1
Boudreaux-Bartels, G.F.2
-
8
-
-
0027885129
-
Fractal estimation from noisy data via discrete fractional Gaussian noise (DFGN) and the Haar basis
-
L. M. Kaplan and C.-C. Kuo, "Fractal estimation from noisy data via discrete fractional Gaussian noise (DFGN) and the Haar basis," IEEE Trans. Signal Processing, vol. 41, pp. 3554-3562, 1993.
-
(1993)
IEEE Trans. Signal Processing
, vol.41
, pp. 3554-3562
-
-
Kaplan, L.M.1
Kuo, C.-C.2
-
10
-
-
0029343183
-
Multiresolution analysis of a class of nonstationary processes
-
H. Krim and J.-C. Pesquet, "Multiresolution analysis of a class of nonstationary processes," IEEE Trans. Inform. Theory, vol. 41, pp. 1010-1020, 1995.
-
(1995)
IEEE Trans. Inform. Theory
, vol.41
, pp. 1010-1020
-
-
Krim, H.1
Pesquet, J.-C.2
-
12
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
July
-
S. G. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674-693, July 1989.
-
(1989)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.11
, pp. 674-693
-
-
Mallat, S.G.1
-
14
-
-
0004255104
-
-
H.-O. Peitgen and D. Saupe, Eds., Berlin, Germany: Springer-Verlag
-
H.-O. Peitgen and D. Saupe, Eds., The Science of Fractal Images. Berlin, Germany: Springer-Verlag, 1988.
-
(1988)
The Science of Fractal Images
-
-
-
18
-
-
0026679673
-
Correlation structure of the discrete wavelet coefficients of fractional Brownian motion
-
A. H. Tewfik and M. Kim, "Correlation structure of the discrete wavelet coefficients of fractional Brownian motion," IEEE Trans. Inform. Theory, vol. 38, pp. 904-909, 1992.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 904-909
-
-
Tewfik, A.H.1
Kim, M.2
|