-
1
-
-
0031171224
-
Dioptric power: Its nature and its represen-tation in three and four dimensional space
-
This issue of the journal (June 1997) is a feature issue on visual optics and contains many related articles
-
W. F. Harris, “Dioptric power: its nature and its represen-tation in three and four dimensional space” Optom. Vision Sci. 74, 349–366 (1997). This issue of the journal (June 1997) is a feature issue on visual optics and contains many related articles.
-
(1997)
Optom. Vision Sci
, vol.74
, pp. 349-366
-
-
Harris, W.F.1
-
2
-
-
0031214826
-
Expressions for aberration coefficients using nonlinear transforms
-
V. Lakshminarayanan and S. Varadharajan, “Expressions for aberration coefficients using nonlinear transforms” Op-tom. Vision Sci. 74, 676–686 (1997).
-
(1997)
Op-Tom. Vision Sci
, vol.74
, pp. 676-686
-
-
Lakshminarayanan, V.1
Varadharajan, S.2
-
3
-
-
0343087398
-
Calculation of aberration coefficients: A matrix method
-
V. Lakshminara-yanan, ed. (Kluwer, Dordrecht, The Netherlands
-
V. Lakshminarayanan and S. Varadharajan, “Calculation of aberration coefficients: a matrix method” in Basic and Clinical Applications of Vision Science, V. Lakshminara-yanan, ed. (Kluwer, Dordrecht, The Netherlands, 1997), pp. 111–115.
-
(1997)
Basic and Clinical Applications of Vision Science
, pp. 111-115
-
-
Lakshminarayanan, V.1
Varadharajan, S.2
-
4
-
-
0042599737
-
Matrix method for nonlinear transformation and its application to an optical system
-
M. Kondo and Y. Takeuchi, “Matrix method for nonlinear transformation and its application to an optical system” J. Opt. Soc. Am. A 13, 71–89 (1996).
-
(1996)
J. Opt. Soc. Am. A
, vol.13
, pp. 71-89
-
-
Kondo, M.1
Takeuchi, Y.2
-
5
-
-
0020102825
-
Lie algebraic theory of geometrical optics and optical aberrations
-
A. J. Dragt, “Lie algebraic theory of geometrical optics and optical aberrations” J. Opt. Soc. Am. 72, 372–379 (1982).
-
(1982)
J. Opt. Soc. Am
, vol.72
, pp. 372-379
-
-
Dragt, A.J.1
-
6
-
-
0022765302
-
Elementary and advanced Lie algebraic meth-ods with applications to accelerator design, electron micro-scopes and light optics
-
A. J. Dragt, “Elementary and advanced Lie algebraic meth-ods with applications to accelerator design, electron micro-scopes and light optics” Nucl. Instrum. Methods Phys. Res. A 258, 339–354 (1987).
-
(1987)
Nucl. Instrum. Methods Phys. Res. A
, vol.258
, pp. 339-354
-
-
Dragt, A.J.1
-
7
-
-
0039615415
-
Foundations of a Lie algebraic theory of geometrical optics
-
J. Sanchez Mondragon and K. B. Wolf, edsSpringer-Verlag, Heidel-berg, This book contains an extensive overview of Lie group theory and applications in optics. See also the book edited by K. B. Wolf (Ref. 26) for related ar-ticles
-
A. J. Dragt, E. Forest, and K. B. Wolf, “Foundations of a Lie algebraic theory of geometrical optics” in Lie Methods in Optics, Vol. 250 of Lecture Notes in Physics, J. Sanchez Mondragon and K. B. Wolf, eds. (Springer-Verlag, Heidel-berg, 1986), pp. 105–157. This book contains an extensive overview of Lie group theory and applications in optics. See also the book edited by K. B. Wolf (Ref. 26) for related ar-ticles.
-
(1986)
Lie Methods in Optics, Vol. 250 of Lecture Notes in Physics
, pp. 105-157
-
-
Dragt, A.J.1
Forest, E.2
Wolf, K.B.3
-
12
-
-
0003264910
-
Nonlinear orbit dynamics
-
R. A. Carrigan, ed., AIP Con-ference Proceedings 87, American Institute of Physics, Woodbury, N.Y
-
A. J. Dragt, “Nonlinear orbit dynamics” in Physics of High Energy Particle Accelerators, R. A. Carrigan, ed., AIP Con-ference Proceedings 87 (American Institute of Physics, Woodbury, N.Y., 1982), pp. 147–313.
-
(1982)
Physics of High Energy Particle Accelerators
, pp. 147-313
-
-
Dragt, A.J.1
-
15
-
-
85010114929
-
-
For a general treatment of symplectic methods, see V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge U. Press, Cambridge, UK
-
For a general treatment of symplectic methods, see V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge U. Press, Cambridge, UK, 1984).
-
(1984)
-
-
-
16
-
-
0002326597
-
Measuring and handling general astigmatic beams
-
P. M. Medjias, H. Weber, R. Martinez-Herrero, A. Gonzales-Urena, edsSo-ciedad Espanola de Optica, Madrid
-
G. Nemes, “Measuring and handling general astigmatic beams” in Laser Beam Characterization, P. M. Medjias, H. Weber, R. Martinez-Herrero, A. Gonzales-Urena, eds. (So-ciedad Espanola de Optica, Madrid, 1993), pp. 325–356.
-
(1993)
Laser Beam Characterization
, pp. 325-356
-
-
Nemes, G.1
-
17
-
-
0001332130
-
Realiza-tion of first order optical systems using thin lenses
-
E. C. G. Sudarshan, N. Mukunda, and R. Simon, “Realiza-tion of first order optical systems using thin lenses” Opt. Acta 32, 855–872 (1985).
-
(1985)
Opt. Acta
, vol.32
, pp. 855-872
-
-
Sudarshan, E.C.G.1
Mukunda, N.2
Simon, R.3
-
18
-
-
0014871661
-
Nonorthogonal optical waveguides and reso-nators
-
J. A. Arnaud, “Nonorthogonal optical waveguides and reso-nators” Bell Syst. Tech. J. 49, 2311–2348 (1970).
-
(1970)
Bell Syst. Tech. J
, vol.49
, pp. 2311-2348
-
-
Arnaud, J.A.1
-
19
-
-
0009412617
-
ABCD law for partially coherent Gauss-ian light, propagating through first order optical systems
-
M. J. Bastianns, “ABCD law for partially coherent Gauss-ian light, propagating through first order optical systems” Opt. Quantum Electron. 24, 1011–1019 (1992).
-
(1992)
Opt. Quantum Electron
, vol.24
, pp. 1011-1019
-
-
Bastianns, M.J.1
-
20
-
-
0030175920
-
Ray vector fields, prismatic effect and thick astigmatic optical systems
-
W. F. Harris, “Ray vector fields, prismatic effect and thick astigmatic optical systems” Optom. Vision Sci. 73, 418–423 (1996).
-
(1996)
Optom. Vision Sci
, vol.73
, pp. 418-423
-
-
Harris, W.F.1
-
21
-
-
36749113095
-
Lie series and invariant func-tions for analytic symplectic maps
-
A. J. Dragt and J. M. Finn, “Lie series and invariant func-tions for analytic symplectic maps” J. Math Phys. (N.Y.) 17, 2215–2227 (1976).
-
(1976)
J. Math Phys. (N.Y.)
, vol.17
, pp. 2215-2227
-
-
Dragt, A.J.1
Finn, J.M.2
-
22
-
-
0003437218
-
-
2nd ed. Addison-Wesley, Reading, Mass
-
H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass., 1980).
-
(1980)
Classical Mechanics
-
-
Goldstein, H.1
-
23
-
-
36749114552
-
Computation of non-linear be-havior of Hamiltonian systems using Lie algebraic methods
-
A. J. Dragt and E. Forest, “Computation of non-linear be-havior of Hamiltonian systems using Lie algebraic methods” J. Math. Phys. (N.Y.) 24, 2734–2744 (1983).
-
(1983)
J. Math. Phys. (N.Y.)
, vol.24
, pp. 2734-2744
-
-
Dragt, A.J.1
Forest, E.2
-
24
-
-
0031356816
-
Spherical aberration and its correction using Lie algebraic techniques
-
G. Rangarajan and M. Sachidanand, “Spherical aberration and its correction using Lie algebraic techniques” Pramana J. Phys. 49, 635–643 (1997).
-
(1997)
Pramana J. Phys
, vol.49
, pp. 635-643
-
-
Rangarajan, G.1
Sachidanand, M.2
-
26
-
-
0029114989
-
Continuous gradient index and shell models of the human lens
-
D. A. Atchison and G. Smith, “Continuous gradient index and shell models of the human lens” Vision Res. 35, 2529–2538 (1995).
-
(1995)
Vision Res
, vol.35
, pp. 2529-2538
-
-
Atchison, D.A.1
Smith, G.2
-
27
-
-
85010171119
-
-
A computer code, MARYLIE 3.0, a program for charged par-ticle beam transport based on Lie algebraic methods, has been developed by A. J. Dragt and his colleagues. For in-formation contact A. Dragt, Dynamical Systems and Accel-erator Theory Group, Department of Physics, University of Maryland, College Park, Maryland 20742-4111
-
A computer code, MARYLIE 3.0, a program for charged par-ticle beam transport based on Lie algebraic methods, has been developed by A. J. Dragt and his colleagues. For in-formation contact A. Dragt, Dynamical Systems and Accel-erator Theory Group, Department of Physics, University of Maryland, College Park, Maryland 20742-4111.
-
-
-
-
28
-
-
11644266637
-
Lie methods in optics: An assessment
-
K. B. Wolf, ed., Vol. 352 of Springer Lecture Notes in Physics, Springer-Verlag, Heidelberg
-
P. W. Hawkes, “Lie methods in optics: an assessment” in Lie Methods in Optics II, K. B. Wolf, ed., Vol. 352 of Springer Lecture Notes in Physics (Springer-Verlag, Heidelberg, 1989), pp. 1–17.
-
(1989)
Lie Methods in Optics II
, pp. 1-17
-
-
Hawkes, P.W.1
-
29
-
-
0031170967
-
The refractive group
-
C. Campbell, “The refractive group” Optom. Vision Sci. 74, 381–387 (1997).
-
(1997)
Optom. Vision Sci
, vol.74
, pp. 381-387
-
-
Campbell, C.1
-
30
-
-
0002345126
-
The Lie algebra of visual perception
-
See, for example
-
See, for example, W. C. Hoffman, “The Lie algebra of visual perception” J. Math. Psychol. 3, 65–98 (1966).
-
(1966)
J. Math. Psychol
, vol.3
, pp. 65-98
-
-
Hoffman, W.C.1
-
31
-
-
84975572553
-
Relationship between integral transform invari-ances and Lie group theory
-
See also P. Dodwell, Visual Pattern Recognition (Holt, Rinehart & Win-ston, New York, 1970). The Lie group approach has been used in the invariance coding problem by
-
See also P. Dodwell, Visual Pattern Recognition (Holt, Rinehart & Win-ston, New York, 1970). The Lie group approach has been used in the invariance coding problem by M. Ferraro and T. Caelli, “Relationship between integral transform invari-ances and Lie group theory” J. Opt. Soc. Am. A 5, 738–742 (1988).
-
(1988)
J. Opt. Soc. Am. A
, vol.5
, pp. 738-742
-
-
Ferraro, M.1
Caelli, T.2
-
32
-
-
11644254620
-
Representa-tion of rigid stimulus transformations by cortical activity patterns
-
R. D. Luce, M. D’Zmura, D. Hoffman, G. Iverson, and A. K. Romney, eds. Erlbaum, Mahwah, N.J
-
V. Lakshminarayanan and T. S. Santhanam, “Representa-tion of rigid stimulus transformations by cortical activity patterns” in Geometric Representations of Perceptual Phe-nomena, R. D. Luce, M. D’Zmura, D. Hoffman, G. Iverson, and A. K. Romney, eds. (Erlbaum, Mahwah, N.J., 1995), pp. 61–69.
-
(1995)
Geometric Representations of Perceptual Phe-Nomena
, pp. 61-69
-
-
Lakshminarayanan, V.1
Santhanam, T.S.2
|