메뉴 건너뛰기




Volumn 15, Issue 9, 1998, Pages 2497-2503

Lie algebraic treatment of dioptric power and optical aberrations

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; HUMAN; OPTICS; PATHOPHYSIOLOGY; REFRACTION ERROR; VISUAL SYSTEM FUNCTION;

EID: 0032160581     PISSN: 10847529     EISSN: 15208532     Source Type: Journal    
DOI: 10.1364/JOSAA.15.002497     Document Type: Article
Times cited : (23)

References (32)
  • 1
    • 0031171224 scopus 로고    scopus 로고
    • Dioptric power: Its nature and its represen-tation in three and four dimensional space
    • This issue of the journal (June 1997) is a feature issue on visual optics and contains many related articles
    • W. F. Harris, “Dioptric power: its nature and its represen-tation in three and four dimensional space” Optom. Vision Sci. 74, 349–366 (1997). This issue of the journal (June 1997) is a feature issue on visual optics and contains many related articles.
    • (1997) Optom. Vision Sci , vol.74 , pp. 349-366
    • Harris, W.F.1
  • 2
    • 0031214826 scopus 로고    scopus 로고
    • Expressions for aberration coefficients using nonlinear transforms
    • V. Lakshminarayanan and S. Varadharajan, “Expressions for aberration coefficients using nonlinear transforms” Op-tom. Vision Sci. 74, 676–686 (1997).
    • (1997) Op-Tom. Vision Sci , vol.74 , pp. 676-686
    • Lakshminarayanan, V.1    Varadharajan, S.2
  • 3
    • 0343087398 scopus 로고    scopus 로고
    • Calculation of aberration coefficients: A matrix method
    • V. Lakshminara-yanan, ed. (Kluwer, Dordrecht, The Netherlands
    • V. Lakshminarayanan and S. Varadharajan, “Calculation of aberration coefficients: a matrix method” in Basic and Clinical Applications of Vision Science, V. Lakshminara-yanan, ed. (Kluwer, Dordrecht, The Netherlands, 1997), pp. 111–115.
    • (1997) Basic and Clinical Applications of Vision Science , pp. 111-115
    • Lakshminarayanan, V.1    Varadharajan, S.2
  • 4
    • 0042599737 scopus 로고    scopus 로고
    • Matrix method for nonlinear transformation and its application to an optical system
    • M. Kondo and Y. Takeuchi, “Matrix method for nonlinear transformation and its application to an optical system” J. Opt. Soc. Am. A 13, 71–89 (1996).
    • (1996) J. Opt. Soc. Am. A , vol.13 , pp. 71-89
    • Kondo, M.1    Takeuchi, Y.2
  • 5
    • 0020102825 scopus 로고
    • Lie algebraic theory of geometrical optics and optical aberrations
    • A. J. Dragt, “Lie algebraic theory of geometrical optics and optical aberrations” J. Opt. Soc. Am. 72, 372–379 (1982).
    • (1982) J. Opt. Soc. Am , vol.72 , pp. 372-379
    • Dragt, A.J.1
  • 6
    • 0022765302 scopus 로고
    • Elementary and advanced Lie algebraic meth-ods with applications to accelerator design, electron micro-scopes and light optics
    • A. J. Dragt, “Elementary and advanced Lie algebraic meth-ods with applications to accelerator design, electron micro-scopes and light optics” Nucl. Instrum. Methods Phys. Res. A 258, 339–354 (1987).
    • (1987) Nucl. Instrum. Methods Phys. Res. A , vol.258 , pp. 339-354
    • Dragt, A.J.1
  • 7
    • 0039615415 scopus 로고
    • Foundations of a Lie algebraic theory of geometrical optics
    • J. Sanchez Mondragon and K. B. Wolf, edsSpringer-Verlag, Heidel-berg, This book contains an extensive overview of Lie group theory and applications in optics. See also the book edited by K. B. Wolf (Ref. 26) for related ar-ticles
    • A. J. Dragt, E. Forest, and K. B. Wolf, “Foundations of a Lie algebraic theory of geometrical optics” in Lie Methods in Optics, Vol. 250 of Lecture Notes in Physics, J. Sanchez Mondragon and K. B. Wolf, eds. (Springer-Verlag, Heidel-berg, 1986), pp. 105–157. This book contains an extensive overview of Lie group theory and applications in optics. See also the book edited by K. B. Wolf (Ref. 26) for related ar-ticles.
    • (1986) Lie Methods in Optics, Vol. 250 of Lecture Notes in Physics , pp. 105-157
    • Dragt, A.J.1    Forest, E.2    Wolf, K.B.3
  • 12
    • 0003264910 scopus 로고
    • Nonlinear orbit dynamics
    • R. A. Carrigan, ed., AIP Con-ference Proceedings 87, American Institute of Physics, Woodbury, N.Y
    • A. J. Dragt, “Nonlinear orbit dynamics” in Physics of High Energy Particle Accelerators, R. A. Carrigan, ed., AIP Con-ference Proceedings 87 (American Institute of Physics, Woodbury, N.Y., 1982), pp. 147–313.
    • (1982) Physics of High Energy Particle Accelerators , pp. 147-313
    • Dragt, A.J.1
  • 15
    • 85010114929 scopus 로고
    • For a general treatment of symplectic methods, see V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge U. Press, Cambridge, UK
    • For a general treatment of symplectic methods, see V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge U. Press, Cambridge, UK, 1984).
    • (1984)
  • 16
    • 0002326597 scopus 로고
    • Measuring and handling general astigmatic beams
    • P. M. Medjias, H. Weber, R. Martinez-Herrero, A. Gonzales-Urena, edsSo-ciedad Espanola de Optica, Madrid
    • G. Nemes, “Measuring and handling general astigmatic beams” in Laser Beam Characterization, P. M. Medjias, H. Weber, R. Martinez-Herrero, A. Gonzales-Urena, eds. (So-ciedad Espanola de Optica, Madrid, 1993), pp. 325–356.
    • (1993) Laser Beam Characterization , pp. 325-356
    • Nemes, G.1
  • 17
    • 0001332130 scopus 로고
    • Realiza-tion of first order optical systems using thin lenses
    • E. C. G. Sudarshan, N. Mukunda, and R. Simon, “Realiza-tion of first order optical systems using thin lenses” Opt. Acta 32, 855–872 (1985).
    • (1985) Opt. Acta , vol.32 , pp. 855-872
    • Sudarshan, E.C.G.1    Mukunda, N.2    Simon, R.3
  • 18
    • 0014871661 scopus 로고
    • Nonorthogonal optical waveguides and reso-nators
    • J. A. Arnaud, “Nonorthogonal optical waveguides and reso-nators” Bell Syst. Tech. J. 49, 2311–2348 (1970).
    • (1970) Bell Syst. Tech. J , vol.49 , pp. 2311-2348
    • Arnaud, J.A.1
  • 19
    • 0009412617 scopus 로고
    • ABCD law for partially coherent Gauss-ian light, propagating through first order optical systems
    • M. J. Bastianns, “ABCD law for partially coherent Gauss-ian light, propagating through first order optical systems” Opt. Quantum Electron. 24, 1011–1019 (1992).
    • (1992) Opt. Quantum Electron , vol.24 , pp. 1011-1019
    • Bastianns, M.J.1
  • 20
    • 0030175920 scopus 로고    scopus 로고
    • Ray vector fields, prismatic effect and thick astigmatic optical systems
    • W. F. Harris, “Ray vector fields, prismatic effect and thick astigmatic optical systems” Optom. Vision Sci. 73, 418–423 (1996).
    • (1996) Optom. Vision Sci , vol.73 , pp. 418-423
    • Harris, W.F.1
  • 21
    • 36749113095 scopus 로고
    • Lie series and invariant func-tions for analytic symplectic maps
    • A. J. Dragt and J. M. Finn, “Lie series and invariant func-tions for analytic symplectic maps” J. Math Phys. (N.Y.) 17, 2215–2227 (1976).
    • (1976) J. Math Phys. (N.Y.) , vol.17 , pp. 2215-2227
    • Dragt, A.J.1    Finn, J.M.2
  • 22
    • 0003437218 scopus 로고
    • 2nd ed. Addison-Wesley, Reading, Mass
    • H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass., 1980).
    • (1980) Classical Mechanics
    • Goldstein, H.1
  • 23
    • 36749114552 scopus 로고
    • Computation of non-linear be-havior of Hamiltonian systems using Lie algebraic methods
    • A. J. Dragt and E. Forest, “Computation of non-linear be-havior of Hamiltonian systems using Lie algebraic methods” J. Math. Phys. (N.Y.) 24, 2734–2744 (1983).
    • (1983) J. Math. Phys. (N.Y.) , vol.24 , pp. 2734-2744
    • Dragt, A.J.1    Forest, E.2
  • 24
    • 0031356816 scopus 로고    scopus 로고
    • Spherical aberration and its correction using Lie algebraic techniques
    • G. Rangarajan and M. Sachidanand, “Spherical aberration and its correction using Lie algebraic techniques” Pramana J. Phys. 49, 635–643 (1997).
    • (1997) Pramana J. Phys , vol.49 , pp. 635-643
    • Rangarajan, G.1    Sachidanand, M.2
  • 26
    • 0029114989 scopus 로고
    • Continuous gradient index and shell models of the human lens
    • D. A. Atchison and G. Smith, “Continuous gradient index and shell models of the human lens” Vision Res. 35, 2529–2538 (1995).
    • (1995) Vision Res , vol.35 , pp. 2529-2538
    • Atchison, D.A.1    Smith, G.2
  • 27
    • 85010171119 scopus 로고    scopus 로고
    • A computer code, MARYLIE 3.0, a program for charged par-ticle beam transport based on Lie algebraic methods, has been developed by A. J. Dragt and his colleagues. For in-formation contact A. Dragt, Dynamical Systems and Accel-erator Theory Group, Department of Physics, University of Maryland, College Park, Maryland 20742-4111
    • A computer code, MARYLIE 3.0, a program for charged par-ticle beam transport based on Lie algebraic methods, has been developed by A. J. Dragt and his colleagues. For in-formation contact A. Dragt, Dynamical Systems and Accel-erator Theory Group, Department of Physics, University of Maryland, College Park, Maryland 20742-4111.
  • 28
    • 11644266637 scopus 로고
    • Lie methods in optics: An assessment
    • K. B. Wolf, ed., Vol. 352 of Springer Lecture Notes in Physics, Springer-Verlag, Heidelberg
    • P. W. Hawkes, “Lie methods in optics: an assessment” in Lie Methods in Optics II, K. B. Wolf, ed., Vol. 352 of Springer Lecture Notes in Physics (Springer-Verlag, Heidelberg, 1989), pp. 1–17.
    • (1989) Lie Methods in Optics II , pp. 1-17
    • Hawkes, P.W.1
  • 29
    • 0031170967 scopus 로고    scopus 로고
    • The refractive group
    • C. Campbell, “The refractive group” Optom. Vision Sci. 74, 381–387 (1997).
    • (1997) Optom. Vision Sci , vol.74 , pp. 381-387
    • Campbell, C.1
  • 30
    • 0002345126 scopus 로고
    • The Lie algebra of visual perception
    • See, for example
    • See, for example, W. C. Hoffman, “The Lie algebra of visual perception” J. Math. Psychol. 3, 65–98 (1966).
    • (1966) J. Math. Psychol , vol.3 , pp. 65-98
    • Hoffman, W.C.1
  • 31
    • 84975572553 scopus 로고
    • Relationship between integral transform invari-ances and Lie group theory
    • See also P. Dodwell, Visual Pattern Recognition (Holt, Rinehart & Win-ston, New York, 1970). The Lie group approach has been used in the invariance coding problem by
    • See also P. Dodwell, Visual Pattern Recognition (Holt, Rinehart & Win-ston, New York, 1970). The Lie group approach has been used in the invariance coding problem by M. Ferraro and T. Caelli, “Relationship between integral transform invari-ances and Lie group theory” J. Opt. Soc. Am. A 5, 738–742 (1988).
    • (1988) J. Opt. Soc. Am. A , vol.5 , pp. 738-742
    • Ferraro, M.1    Caelli, T.2
  • 32
    • 11644254620 scopus 로고
    • Representa-tion of rigid stimulus transformations by cortical activity patterns
    • R. D. Luce, M. D’Zmura, D. Hoffman, G. Iverson, and A. K. Romney, eds. Erlbaum, Mahwah, N.J
    • V. Lakshminarayanan and T. S. Santhanam, “Representa-tion of rigid stimulus transformations by cortical activity patterns” in Geometric Representations of Perceptual Phe-nomena, R. D. Luce, M. D’Zmura, D. Hoffman, G. Iverson, and A. K. Romney, eds. (Erlbaum, Mahwah, N.J., 1995), pp. 61–69.
    • (1995) Geometric Representations of Perceptual Phe-Nomena , pp. 61-69
    • Lakshminarayanan, V.1    Santhanam, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.