-
1
-
-
0000528202
-
-
C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke, Phys. Lett. 99A, 415 (1983).PYLAAG
-
(1983)
Phys. Lett.
, vol.99A
, pp. 415
-
-
Grebogi, C.1
McDonald, S.W.2
Ott, E.3
Yorke, J.A.4
-
2
-
-
24444476675
-
-
S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, Physica D 17, 125 (1985).PDNPDT
-
(1985)
Physica D
, vol.17
, pp. 125
-
-
McDonald, S.W.1
Grebogi, C.2
Ott, E.3
Yorke, J.A.4
-
5
-
-
0004029931
-
-
Springer-Verlag, New York, J. C. Alexander
-
C. Grebogi, H. E. Nusse, E. Ott, and J. A. Yorke, in Dynamical Systems, edited by J. C. Alexander, Lecture Notes in Mathematics Vol. 1342 (Springer-Verlag, New York, 1988).
-
(1988)
Dynamical Systems
-
-
Grebogi, C.1
Nusse, H.E.2
Ott, E.3
Yorke, J.A.4
-
6
-
-
34547181445
-
-
M. Iansiti, Q. Hu, R. M. Westervelt, and M. Tinkham, Phys. Rev. Lett. 55, 746 (1985)
-
(1985)
Phys. Rev. Lett.
, vol.55
, pp. 746
-
-
Iansiti, M.1
Hu, Q.2
Westervelt, R.M.3
Tinkham, M.4
-
10
-
-
0040328952
-
-
B.-S. Park, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A 40, 1576 (1989).PLRAAN
-
(1989)
Phys. Rev. A
, vol.40
, pp. 1576
-
-
Park, B.-S.1
Grebogi, C.2
Ott, E.3
Yorke, J.A.4
-
11
-
-
85036330990
-
-
The relation between the uncertainty exponent and the box-counting dimension, [Formula Presented] was rigorously proven for Axiom-A systems c4. It was conjectured that the same relation holds for more general dynamical systems c1 c2
-
The relation between the uncertainty exponent and the box-counting dimension, α=N-D, was rigorously proven for Axiom-A systems 4. It was conjectured that the same relation holds for more general dynamical systems 12.
-
-
-
-
14
-
-
0000264457
-
-
L. Poon, J. Campos, E. Ott, and C. Grebogi, Int. J. Bifurcation Chaos Appl. Sci. Eng. 6, 251 (1996).IJBEE4
-
(1996)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.6
, pp. 251
-
-
Poon, L.1
Campos, J.2
Ott, E.3
Grebogi, C.4
-
19
-
-
48549114635
-
-
C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Physica D 13, 261 (1984).PDNPDT
-
(1984)
Physica D
, vol.13
, pp. 261
-
-
Grebogi, C.1
Ott, E.2
Pelikan, S.3
Yorke, J.A.4
-
20
-
-
0000419939
-
-
Strange nonchaotic attractors typically occur in quasiperiodically driven dynamical systems. Here the word strange refers to the complicated geometry of the attractor: A strange attractor contains an infinite number of points and it is not a smooth manifold in the phase space. The word chaotic refers to the sensitive dependence on initial conditions: trajectories originating from nearby initial conditions on a chaotic attractor diverge exponentially in time. Strange nonchaotic attractors are therefore geometrically complicated, nonetheless they exhibit no sensitive dependence on initial conditions. Some representative papers are F. J. Romeiras, A. Bondeson, E. Ott, T. M. Antonsen, Jr., and C. Grebogi, Physica D 26, 277 (1987)
-
(1987)
Physica D
, vol.26
, pp. 277
-
-
Romeiras, F.J.1
Bondeson, A.2
Ott, E.3
M. Antonsen, T.4
Grebogi, C.5
-
23
-
-
0000374456
-
-
W. L. Ditto, M. L. Spano, H. T. Savage, S. N. Rauseo, J. F. Heagy, and E. Ott, Phys. Rev. Lett. 65, 533 (1990).PRLTAO
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 533
-
-
Ditto, W.L.1
Spano, M.L.2
Savage, H.T.3
Rauseo, S.N.4
Heagy, J.F.5
Ott, E.6
-
25
-
-
0023310831
-
-
C. Grebogi, E. J. Kostelich, E. Ott, and J. A. Yorke, Physica D 25, 347 (1987).PDNPDT
-
(1987)
Physica D
, vol.25
, pp. 347
-
-
Grebogi, C.1
Kostelich, E.J.2
Ott, E.3
Yorke, J.A.4
-
28
-
-
0000711745
-
-
J. C. Alexander, J. A. Yorke, Z. You, and I. Kan, Int. J. Bifurcation Chaos Appl. Sci. Eng. 2, 795 (1992).IJBEE4
-
(1992)
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, vol.2
, pp. 795
-
-
Alexander, J.C.1
Yorke, J.A.2
You, Z.3
Kan, I.4
-
30
-
-
84989085093
-
-
C. Grebogi, E. Ott, J. A. Yorke, and H. E. Nusse, Ann. (N.Y.) Acad. Sci. 497, 117 (1987).ANYAA9
-
(1987)
Ann. (N.Y.) Acad. Sci.
, vol.497
, pp. 117
-
-
Grebogi, C.1
Ott, E.2
Yorke, J.A.3
Nusse, H.E.4
-
31
-
-
0001158436
-
-
See, for example, E. M. Oblow, Phys. Lett. A 128, 406 (1988).PYLAAG
-
(1988)
Phys. Lett. A
, vol.128
, pp. 406
-
-
Oblow, E.M.1
|