메뉴 건너뛰기




Volumn 32, Issue 3, 1998, Pages 245-295

Learning from examples and membership queries with structured determinations

Author keywords

Controlled experimentation; Declarative bias; Determinations; Pac learning; Prior knowledge; Queries; Read once formulas; Tree structured bias

Indexed keywords

CONTROLLED EXPERIMENTATION; DECLARATIVE BIAS; DETERMINATIONS; PAC-LEARNING; PRIOR KNOWLEDGE; QUERIES; READ-ONCE FORMULAS; TREE-STRUCTURED BIAS;

EID: 0032157958     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1023/A:1007421315813     Document Type: Article
Times cited : (20)

References (40)
  • 2
    • 0000710299 scopus 로고
    • Queries and concept learning
    • Angluin, D. (1988). Queries and concept learning. Machine Learning, 2(4), 319-342.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 5
    • 0343541976 scopus 로고
    • Extending theory refinement to m-of-n rules
    • Baffes, P., & Mooney, R. (1993). Extending theory refinement to m-of-n rules. Informatica, 17, 387-397.
    • (1993) Informatica , vol.17 , pp. 387-397
    • Baffes, P.1    Mooney, R.2
  • 12
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309-348.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-348
    • Cooper, G.1    Herskovits, E.2
  • 13
    • 18244385308 scopus 로고
    • Analogy
    • CSLI, Stanford University
    • Davies, T. (1985). Analogy. Informal note IN-CSLI-85-4, CSLI, Stanford University.
    • (1985) Informal Note , vol.IN-CSLI-85-4
    • Davies, T.1
  • 14
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Nashville, TN: Morgan Kaufmann
    • Friedman, N. (1997). Learning belief networks in the presence of missing values and hidden variables. In Proceedings of International Conference on Machine Learning, (pp. 125-133). Nashville, TN: Morgan Kaufmann.
    • (1997) Proceedings of International Conference on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 15
    • 2442517046 scopus 로고
    • The instance description: How it can be derived and the use of its derivation
    • Unpublished ms report, Computer Science Division, University of California, Berkeley, CA. Later published as
    • Getoor, L. (1989). The instance description: How it can be derived and the use of its derivation. Unpublished ms report, Computer Science Division, University of California, Berkeley, CA. Later published as NASA Ames Research Center Technical Report IC-94-04.
    • (1989) NASA Ames Research Center Technical Report , vol.IC-94-04
    • Getoor, L.1
  • 18
    • 2442448022 scopus 로고
    • Knowledge as bias
    • Benjamin, D. (Ed.), Kluwer, Norwell, MA
    • Hirsh, H. (1990). Knowledge as bias. In Benjamin, D. (Ed.), Change of Representation and Inductive Bias, pp. 209-221. Kluwer, Norwell, MA.
    • (1990) Change of Representation and Inductive Bias , pp. 209-221
    • Hirsh, H.1
  • 19
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning Boolean formulae and finite automata
    • Kèarns, M., & Valiant, L. (1994). Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM, 41(1), 67-95.
    • (1994) Journal of the ACM , vol.41 , Issue.1 , pp. 67-95
    • Kèarns, M.1    Valiant, L.2
  • 20
    • 2442569593 scopus 로고
    • Research note on decision lists
    • Kohavi, R., & Benson, S. (1993). Research note on decision lists. Machine Learning, 13(1), 131-134.
    • (1993) Machine Learning , vol.13 , Issue.1 , pp. 131-134
    • Kohavi, R.1    Benson, S.2
  • 21
    • 0028531585 scopus 로고
    • Quantifying prior determination knowledge using PAC learning model
    • Mahadevan, S., & Tadepalli, P. (1994). Quantifying prior determination knowledge using PAC learning model. Machine Learning, 17(1), 69-105.
    • (1994) Machine Learning , vol.17 , Issue.1 , pp. 69-105
    • Mahadevan, S.1    Tadepalli, P.2
  • 22
    • 0003682772 scopus 로고
    • The need for biases in learning generalizations
    • Shavlik, J., & Dietterich, T. (Eds.), Morgan Kaufmann, San Mateo, CA. Originally published as Rutgers University technical report
    • Mitchell, T. (1980). The need for biases in learning generalizations. In Shavlik, J., & Dietterich, T. (Eds.), Readings in Machine Learning, pp. 184-191. Morgan Kaufmann, San Mateo, CA. Originally published as Rutgers University technical report.
    • (1980) Readings in Machine Learning , pp. 184-191
    • Mitchell, T.1
  • 24
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-99.
    • (1990) Machine Learning , vol.5 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 25
    • 8844261754 scopus 로고
    • The utility of knowledge in inductive learning
    • Pazzani, M., & Kibler, D. (1992). The utility of knowledge in inductive learning. Machine Learning, 9(1), 57-94.
    • (1992) Machine Learning , vol.9 , Issue.1 , pp. 57-94
    • Pazzani, M.1    Kibler, D.2
  • 27
  • 28
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, R.1
  • 29
    • 0001172265 scopus 로고
    • Learning logical definitions from relations
    • Quinlan, R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239-266.
    • (1990) Machine Learning , vol.5 , pp. 239-266
    • Quinlan, R.1
  • 30
    • 1442267080 scopus 로고
    • Learning decision lists
    • Rivest, R. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.1
  • 35
    • 0039845153 scopus 로고
    • Declarative bias: An overview
    • Benjamin, D. (Ed.), Kluwer, Norwell, MA
    • Russell, S., & Grosof, B. (1990). Declarative bias: An overview. In Benjamin, D. (Ed.), Change of Representation and Inductive Bias, pp. 267-308. Kluwer, Norwell, MA.
    • (1990) Change of Representation and Inductive Bias , pp. 267-308
    • Russell, S.1    Grosof, B.2
  • 36
    • 84945789128 scopus 로고
    • An approach to combining explanation-based and neural learning algorithms
    • Shavlik, J., & Towell, G. (1989). An approach to combining explanation-based and neural learning algorithms. Connection Science, 3(1), 231-53.
    • (1989) Connection Science , vol.3 , Issue.1 , pp. 231-253
    • Shavlik, J.1    Towell, G.2
  • 38
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.