-
2
-
-
0000149393
-
Numerical analysis of semilinear parabolic problems with blow-up solutions
-
[2] C. Bandle, H. Brunner, Numerical analysis of semilinear parabolic problems with blow-up solutions, Rev. Real Acad. Cienc. Fis. Natur. Madrid 88 (1994) 203-222.
-
(1994)
Rev. Real Acad. Cienc. Fis. Natur. Madrid
, vol.88
, pp. 203-222
-
-
Bandle, C.1
Brunner, H.2
-
3
-
-
38249035337
-
Blow-up of solutions of parabolic equations with nonlinear memory
-
[3] H. Bellout, Blow-up of solutions of parabolic equations with nonlinear memory, J. Diff. Eqns. 70 (1987) 42-68.
-
(1987)
J. Diff. Eqns.
, vol.70
, pp. 42-68
-
-
Bellout, H.1
-
4
-
-
0004276231
-
-
Holt, Rinehardt and Winston, New York
-
[4] N. Bleistein, R.A. Handelsman, Asymptotic Expansion of Integrals, Holt, Rinehardt and Winston, New York, 1975.
-
(1975)
Asymptotic Expansion of Integrals
-
-
Bleistein, N.1
Handelsman, R.A.2
-
5
-
-
0039797541
-
Numerical blow-up in Volterra integral and integro-differential equations
-
Charlotte, NC
-
[5] H. Brunner, Numerical blow-up in Volterra integral and integro-differential equations, SIAM Annual Meeting, Charlotte, NC, 1995.
-
(1995)
SIAM Annual Meeting
-
-
Brunner, H.1
-
6
-
-
0030213183
-
Study of the blow-up set by transformation
-
[6] A. Boumenir, Study of the blow-up set by transformation, J. Math. Anal. Appl. 201 (1996) 697-714.
-
(1996)
J. Math. Anal. Appl.
, vol.201
, pp. 697-714
-
-
Boumenir, A.1
-
7
-
-
0029681222
-
On the maximal interval of existence for solutions to some non-linear Volterra integral equations with convolution kernel
-
[7] P.J. Bushell, W. Okrasinski, On the maximal interval of existence for solutions to some non-linear Volterra integral equations with convolution kernel, Bull. London Math. Soc. 28 (1996) 59-65.
-
(1996)
Bull. London Math. Soc.
, vol.28
, pp. 59-65
-
-
Bushell, P.J.1
Okrasinski, W.2
-
8
-
-
0000720333
-
The blowup property of solutions to some diffusion equations with localized nonlinear reactions
-
[8] J.M. Chadam, A. Peirce, H.-M. Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl. 169 (1992) 313-328.
-
(1992)
J. Math. Anal. Appl.
, vol.169
, pp. 313-328
-
-
Chadam, J.M.1
Peirce, A.2
Yin, H.-M.3
-
9
-
-
84974160154
-
A diffusion equation with localized chemical reactions
-
[9] J.M. Chadam, H.-M. Yin, A diffusion equation with localized chemical reactions, Proc. Edin. Math. Soc. 37 (1993) 101-118.
-
(1993)
Proc. Edin. Math. Soc.
, vol.37
, pp. 101-118
-
-
Chadam, J.M.1
Yin, H.-M.2
-
10
-
-
0040389928
-
Blow-up solutions and global solutions for a class of semilinear integro-differential equations
-
[10] S. Cui, Y. Ma, Blow-up solutions and global solutions for a class of semilinear integro-differential equations, Math. Appl. 6 (1993) 531-546.
-
(1993)
Math. Appl.
, vol.6
, pp. 531-546
-
-
Cui, S.1
Ma, Y.2
-
11
-
-
0040984139
-
Quenching for a diffusive equation with a concentrated singularity
-
[11] K. Deng, C.A. Roberts, Quenching for a diffusive equation with a concentrated singularity, Diff. Int. Eqn. 10 (1997) 369-379.
-
(1997)
Diff. Int. Eqn.
, vol.10
, pp. 369-379
-
-
Deng, K.1
Roberts, C.A.2
-
12
-
-
21844481846
-
Dynamical behavior of solutions of a semilinear heat equation with nonlocal singularity
-
[12] K. Deng, Dynamical behavior of solutions of a semilinear heat equation with nonlocal singularity, SIAM J. Math. Anal. 26 (1995) 98-111.
-
(1995)
SIAM J. Math. Anal.
, vol.26
, pp. 98-111
-
-
Deng, K.1
-
13
-
-
0040389921
-
Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium
-
[13] S.N. Dimova, M.S. Kaschiev, M.G. Koleva, D.P. Vasileva, Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium, Comput. Math. Phys. 35 (1995) 303-319.
-
(1995)
Comput. Math. Phys.
, vol.35
, pp. 303-319
-
-
Dimova, S.N.1
Kaschiev, M.S.2
Koleva, M.G.3
Vasileva, D.P.4
-
16
-
-
0000775450
-
Finite-time blow-up for solutions of nonlinear wave equations
-
[16] R.T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z. 177 (1982) 323-340.
-
(1982)
Math. Z.
, vol.177
, pp. 323-340
-
-
Glassey, R.T.1
-
17
-
-
0001664892
-
Blow-up results and localizations of blow-up points for the heat equation with a nonlinear boundary condition
-
[17] J.L. Gomez, V. Marquez, N. Wolanski, Blow-up results and localizations of blow-up points for the heat equation with a nonlinear boundary condition, J. Diff. Eqns. 92 (1991) 384-401.
-
(1991)
J. Diff. Eqns.
, vol.92
, pp. 384-401
-
-
Gomez, J.L.1
Marquez, V.2
Wolanski, N.3
-
18
-
-
0039205357
-
The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition
-
[18] B. Hu, H.-M. Yin, The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition, Inst. Math. Appl. Univ. Minnesota, 1116 (1993).
-
(1993)
Inst. Math. Appl. Univ. Minnesota
, pp. 1116
-
-
Hu, B.1
Yin, H.-M.2
-
19
-
-
0019392462
-
Evolution of deflagration in a cold combustive subjected to a uniform energy flux
-
[19] A.K. Kapila, Evolution of deflagration in a cold combustive subjected to a uniform energy flux, Int. J. Engng. Sci. 43 (1981) 495-509.
-
(1981)
Int. J. Engng. Sci.
, vol.43
, pp. 495-509
-
-
Kapila, A.K.1
-
20
-
-
84980080195
-
On growth of solutions of quasilinear parabolic equations
-
[20] S. Kaplan, On growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (1963) 305-333.
-
(1963)
Comm. Pure Appl. Math.
, vol.16
, pp. 305-333
-
-
Kaplan, S.1
-
21
-
-
0040389926
-
Ignition of a combustible solid by convection heating
-
[21] D. Glenn Lasseigne, W.E. Olmstead, Ignition of a combustible solid by convection heating, J. Appl. Math. Phys. (ZAMP) 34 (1983) 886-898.
-
(1983)
J. Appl. Math. Phys. (ZAMP)
, vol.34
, pp. 886-898
-
-
Lasseigne, D.G.1
Olmstead, W.E.2
-
22
-
-
0023329152
-
Ignition of a combustible solid with reactant consumption
-
[22] D. Glenn Lasseigne, W.E. Olmstead, Ignition of a combustible solid with reactant consumption, SIAM J. Appl. Math. 47 (1987) 332-342.
-
(1987)
SIAM J. Appl. Math.
, vol.47
, pp. 332-342
-
-
Lasseigne, D.G.1
Olmstead, W.E.2
-
23
-
-
0024877697
-
The effect of perturbed heating on the ignition of a combustible solid
-
[23] D. Glenn Lasseigne, W.E. Olmstead, The effect of perturbed heating on the ignition of a combustible solid, Int. J. Engng. Sci. 27 (1989) 1581-1587.
-
(1989)
Int. J. Engng. Sci.
, vol.27
, pp. 1581-1587
-
-
Lasseigne, D.G.1
Olmstead, W.E.2
-
24
-
-
0026172508
-
Ignition or nonignition of a combustible solid with marginal heating
-
[24] D. Glenn Lasseigne, W.E. Olmstead, Ignition or nonignition of a combustible solid with marginal heating, Quat. Appl. Math. 49 (1991) 303-312.
-
(1991)
Quat. Appl. Math.
, vol.49
, pp. 303-312
-
-
Lasseigne, D.G.1
Olmstead, W.E.2
-
25
-
-
0025442951
-
The role of critical exponents in blowup theorems
-
[25] H.A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990) 262-288.
-
(1990)
SIAM Rev.
, vol.32
, pp. 262-288
-
-
Levine, H.A.1
-
26
-
-
77956945641
-
The phenomenon of quenching: A survey
-
Lakshmikantham (Ed.), North-Holland, New York
-
[26] H.A. Levine, The phenomenon of quenching: A survey, in: Lakshmikantham (Ed.), Proc. 6th Internat. Conf. on Trends in Theory and Practice of Nonlinear Anal., North-Holland, New York, 1985, pp. 275-286.
-
(1985)
Proc. 6th Internat. Conf. on Trends in Theory and Practice of Nonlinear Anal.
, pp. 275-286
-
-
Levine, H.A.1
-
27
-
-
0003372222
-
Advances in quenching
-
Lloyd, Ni, Peletier, Serrin (Eds.), Birkhäuser, Boston
-
[27] H.A. Levine, Advances in quenching, in: Lloyd, Ni, Peletier, Serrin (Eds.), Progress in Nonlinear Differential Equations: Proc. Internat. Conf. on Reaction-Diffusion Eqns and their Equilibrium States, Birkhäuser, Boston, 1992, pp. 319-346.
-
(1992)
Progress in Nonlinear Differential Equations: Proc. Internat. Conf. on Reaction-Diffusion Eqns and their Equilibrium States
, pp. 319-346
-
-
Levine, H.A.1
-
28
-
-
0002281597
-
Theory of ignition of a reactive solid by a constant energy flux
-
[28] A. Linan, F.A. Williams, Theory of ignition of a reactive solid by a constant energy flux, Comb. Sci. Technol. 3 (1971) 262-288.
-
(1971)
Comb. Sci. Technol.
, vol.3
, pp. 262-288
-
-
Linan, A.1
Williams, F.A.2
-
29
-
-
43949148008
-
A condition for finite blow-up time for a Volterra integral equation
-
[29] W. Mydlarczyk, A condition for finite blow-up time for a Volterra integral equation, J. Math. Anal. Appl. 181 (1994) 248-253.
-
(1994)
J. Math. Anal. Appl.
, vol.181
, pp. 248-253
-
-
Mydlarczyk, W.1
-
30
-
-
0020704808
-
Ignition of a combustible half space
-
[30] W.E. Olmstead, Ignition of a combustible half space, SIAM J. Appl. Math. 43 (1983) 1-15.
-
(1983)
SIAM J. Appl. Math.
, vol.43
, pp. 1-15
-
-
Olmstead, W.E.1
-
31
-
-
0040133458
-
Asymptotic solution to a class of nonlinear Volterra integral equations
-
[31] W.E. Olmstead, R.A. Handelsman, Asymptotic solution to a class of nonlinear Volterra integral equations, SIAM J. Appl. Math. 22 (1971) 373-384.
-
(1971)
SIAM J. Appl. Math.
, vol.22
, pp. 373-384
-
-
Olmstead, W.E.1
Handelsman, R.A.2
-
32
-
-
0016881753
-
Asymptotic solution to a class of nonlinear Volterra integral equations II
-
[32] W.E. Olmstead, R.A. Handelsman, Asymptotic solution to a class of nonlinear Volterra integral equations II, SIAM J. Appl. Math. 30 (1976) 180-189.
-
(1976)
SIAM J. Appl. Math.
, vol.30
, pp. 180-189
-
-
Olmstead, W.E.1
Handelsman, R.A.2
-
33
-
-
0040360735
-
The one-dimensional heat equation with a nonlocal initial condition
-
[33] W.E. Olmstead, C.A. Roberts, The one-dimensional heat equation with a nonlocal initial condition, Appl. Math. Lett. 10 (1997) 89-94.
-
(1997)
Appl. Math. Lett.
, vol.10
, pp. 89-94
-
-
Olmstead, W.E.1
Roberts, C.A.2
-
34
-
-
0007294102
-
Explosion in a diffusive strip due to a source with local and nonlocal features
-
[34] W.E. Olmstead, C.A. Roberts, Explosion in a diffusive strip due to a source with local and nonlocal features, Math. Appl. Anal. 3 (1996) 345-357.
-
(1996)
Math. Appl. Anal.
, vol.3
, pp. 345-357
-
-
Olmstead, W.E.1
Roberts, C.A.2
-
35
-
-
0040984140
-
Quenching for the heat equation with a nonlocal nonlinearity
-
Angell, Cook, Kleinman, Olmstead (Eds.), Philadelphia
-
[35] W.E. Olmstead, C.A. Roberts, Quenching for the heat equation with a nonlocal nonlinearity, in: Angell, Cook, Kleinman, Olmstead (Eds.), Nonlinear Problems in Applied Mathematics SIAM, Philadelphia, 1995, pp. 199-205.
-
(1995)
Nonlinear Problems in Applied Mathematics SIAM
, pp. 199-205
-
-
Olmstead, W.E.1
Roberts, C.A.2
-
36
-
-
0001324528
-
Explosion in a diffusive strip due to a concentrated nonlinear source
-
[36] W.E. Olmstead, C.A. Roberts, Explosion in a diffusive strip due to a concentrated nonlinear source, Meth. Appl. Anal. 1 (1994) 434-445.
-
(1994)
Meth. Appl. Anal.
, vol.1
, pp. 434-445
-
-
Olmstead, W.E.1
Roberts, C.A.2
-
38
-
-
0040389927
-
A method to determine growth rates of nonlinear Volterra equations
-
Corduneanu, Sandberg (Eds.), Gordon and Breach, UK, to appear
-
[38] C.A. Roberts, A method to determine growth rates of nonlinear Volterra equations, in: Corduneanu, Sandberg (Eds.), Volterra Equations and Applications, Gordon and Breach, UK, to appear.
-
Volterra Equations and Applications
-
-
Roberts, C.A.1
-
39
-
-
0040984138
-
Characterizing the blow-up solutions for nonlinear Volterra integral equations
-
[39] C.A. Roberts, Characterizing the blow-up solutions for nonlinear Volterra integral equations, Nonlinear Anal. Theory Meth. Appl. 30 (1997) 923-933.
-
(1997)
Nonlinear Anal. Theory Meth. Appl.
, vol.30
, pp. 923-933
-
-
Roberts, C.A.1
-
40
-
-
0001591638
-
Volterra equations which model explosion in a diffusive medium
-
[40] C.A. Roberts, D.G. Lasseigne, W.E. Olmstead, Volterra equations which model explosion in a diffusive medium, J. Int. Eqns. Appl. 5 (1993) 531-546.
-
(1993)
J. Int. Eqns. Appl.
, vol.5
, pp. 531-546
-
-
Roberts, C.A.1
Lasseigne, D.G.2
Olmstead, W.E.3
-
41
-
-
0001074918
-
Growth rates for blow-up solutions of nonlinear Volterra equations
-
[41] C.A. Roberts, W.E. Olmstead, Growth rates for blow-up solutions of nonlinear Volterra equations, Quart. Appl. Math. 54 (1996) 153-159.
-
(1996)
Quart. Appl. Math.
, vol.54
, pp. 153-159
-
-
Roberts, C.A.1
Olmstead, W.E.2
|