메뉴 건너뛰기




Volumn 97, Issue 1-2, 1998, Pages 153-166

Analysis of explosion for nonlinear Volterra equations

Author keywords

Blow up; Explosion; Integral equations; Volterra

Indexed keywords

EXPLOSIONS; INTEGRAL EQUATIONS; NUMERICAL ANALYSIS; QUENCHING;

EID: 0032155845     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0377-0427(98)00108-3     Document Type: Article
Times cited : (29)

References (41)
  • 2
    • 0000149393 scopus 로고
    • Numerical analysis of semilinear parabolic problems with blow-up solutions
    • [2] C. Bandle, H. Brunner, Numerical analysis of semilinear parabolic problems with blow-up solutions, Rev. Real Acad. Cienc. Fis. Natur. Madrid 88 (1994) 203-222.
    • (1994) Rev. Real Acad. Cienc. Fis. Natur. Madrid , vol.88 , pp. 203-222
    • Bandle, C.1    Brunner, H.2
  • 3
    • 38249035337 scopus 로고
    • Blow-up of solutions of parabolic equations with nonlinear memory
    • [3] H. Bellout, Blow-up of solutions of parabolic equations with nonlinear memory, J. Diff. Eqns. 70 (1987) 42-68.
    • (1987) J. Diff. Eqns. , vol.70 , pp. 42-68
    • Bellout, H.1
  • 5
    • 0039797541 scopus 로고
    • Numerical blow-up in Volterra integral and integro-differential equations
    • Charlotte, NC
    • [5] H. Brunner, Numerical blow-up in Volterra integral and integro-differential equations, SIAM Annual Meeting, Charlotte, NC, 1995.
    • (1995) SIAM Annual Meeting
    • Brunner, H.1
  • 6
    • 0030213183 scopus 로고    scopus 로고
    • Study of the blow-up set by transformation
    • [6] A. Boumenir, Study of the blow-up set by transformation, J. Math. Anal. Appl. 201 (1996) 697-714.
    • (1996) J. Math. Anal. Appl. , vol.201 , pp. 697-714
    • Boumenir, A.1
  • 7
    • 0029681222 scopus 로고    scopus 로고
    • On the maximal interval of existence for solutions to some non-linear Volterra integral equations with convolution kernel
    • [7] P.J. Bushell, W. Okrasinski, On the maximal interval of existence for solutions to some non-linear Volterra integral equations with convolution kernel, Bull. London Math. Soc. 28 (1996) 59-65.
    • (1996) Bull. London Math. Soc. , vol.28 , pp. 59-65
    • Bushell, P.J.1    Okrasinski, W.2
  • 8
    • 0000720333 scopus 로고
    • The blowup property of solutions to some diffusion equations with localized nonlinear reactions
    • [8] J.M. Chadam, A. Peirce, H.-M. Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl. 169 (1992) 313-328.
    • (1992) J. Math. Anal. Appl. , vol.169 , pp. 313-328
    • Chadam, J.M.1    Peirce, A.2    Yin, H.-M.3
  • 9
    • 84974160154 scopus 로고
    • A diffusion equation with localized chemical reactions
    • [9] J.M. Chadam, H.-M. Yin, A diffusion equation with localized chemical reactions, Proc. Edin. Math. Soc. 37 (1993) 101-118.
    • (1993) Proc. Edin. Math. Soc. , vol.37 , pp. 101-118
    • Chadam, J.M.1    Yin, H.-M.2
  • 10
    • 0040389928 scopus 로고
    • Blow-up solutions and global solutions for a class of semilinear integro-differential equations
    • [10] S. Cui, Y. Ma, Blow-up solutions and global solutions for a class of semilinear integro-differential equations, Math. Appl. 6 (1993) 531-546.
    • (1993) Math. Appl. , vol.6 , pp. 531-546
    • Cui, S.1    Ma, Y.2
  • 11
    • 0040984139 scopus 로고    scopus 로고
    • Quenching for a diffusive equation with a concentrated singularity
    • [11] K. Deng, C.A. Roberts, Quenching for a diffusive equation with a concentrated singularity, Diff. Int. Eqn. 10 (1997) 369-379.
    • (1997) Diff. Int. Eqn. , vol.10 , pp. 369-379
    • Deng, K.1    Roberts, C.A.2
  • 12
    • 21844481846 scopus 로고
    • Dynamical behavior of solutions of a semilinear heat equation with nonlocal singularity
    • [12] K. Deng, Dynamical behavior of solutions of a semilinear heat equation with nonlocal singularity, SIAM J. Math. Anal. 26 (1995) 98-111.
    • (1995) SIAM J. Math. Anal. , vol.26 , pp. 98-111
    • Deng, K.1
  • 13
    • 0040389921 scopus 로고
    • Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium
    • [13] S.N. Dimova, M.S. Kaschiev, M.G. Koleva, D.P. Vasileva, Numerical analysis of the blow-up regimes of combustion of two-component nonlinear heat-conducting medium, Comput. Math. Phys. 35 (1995) 303-319.
    • (1995) Comput. Math. Phys. , vol.35 , pp. 303-319
    • Dimova, S.N.1    Kaschiev, M.S.2    Koleva, M.G.3    Vasileva, D.P.4
  • 16
    • 0000775450 scopus 로고
    • Finite-time blow-up for solutions of nonlinear wave equations
    • [16] R.T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations, Math. Z. 177 (1982) 323-340.
    • (1982) Math. Z. , vol.177 , pp. 323-340
    • Glassey, R.T.1
  • 17
    • 0001664892 scopus 로고
    • Blow-up results and localizations of blow-up points for the heat equation with a nonlinear boundary condition
    • [17] J.L. Gomez, V. Marquez, N. Wolanski, Blow-up results and localizations of blow-up points for the heat equation with a nonlinear boundary condition, J. Diff. Eqns. 92 (1991) 384-401.
    • (1991) J. Diff. Eqns. , vol.92 , pp. 384-401
    • Gomez, J.L.1    Marquez, V.2    Wolanski, N.3
  • 18
    • 0039205357 scopus 로고
    • The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition
    • [18] B. Hu, H.-M. Yin, The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition, Inst. Math. Appl. Univ. Minnesota, 1116 (1993).
    • (1993) Inst. Math. Appl. Univ. Minnesota , pp. 1116
    • Hu, B.1    Yin, H.-M.2
  • 19
    • 0019392462 scopus 로고
    • Evolution of deflagration in a cold combustive subjected to a uniform energy flux
    • [19] A.K. Kapila, Evolution of deflagration in a cold combustive subjected to a uniform energy flux, Int. J. Engng. Sci. 43 (1981) 495-509.
    • (1981) Int. J. Engng. Sci. , vol.43 , pp. 495-509
    • Kapila, A.K.1
  • 20
    • 84980080195 scopus 로고
    • On growth of solutions of quasilinear parabolic equations
    • [20] S. Kaplan, On growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math. 16 (1963) 305-333.
    • (1963) Comm. Pure Appl. Math. , vol.16 , pp. 305-333
    • Kaplan, S.1
  • 21
    • 0040389926 scopus 로고
    • Ignition of a combustible solid by convection heating
    • [21] D. Glenn Lasseigne, W.E. Olmstead, Ignition of a combustible solid by convection heating, J. Appl. Math. Phys. (ZAMP) 34 (1983) 886-898.
    • (1983) J. Appl. Math. Phys. (ZAMP) , vol.34 , pp. 886-898
    • Lasseigne, D.G.1    Olmstead, W.E.2
  • 22
    • 0023329152 scopus 로고
    • Ignition of a combustible solid with reactant consumption
    • [22] D. Glenn Lasseigne, W.E. Olmstead, Ignition of a combustible solid with reactant consumption, SIAM J. Appl. Math. 47 (1987) 332-342.
    • (1987) SIAM J. Appl. Math. , vol.47 , pp. 332-342
    • Lasseigne, D.G.1    Olmstead, W.E.2
  • 23
    • 0024877697 scopus 로고
    • The effect of perturbed heating on the ignition of a combustible solid
    • [23] D. Glenn Lasseigne, W.E. Olmstead, The effect of perturbed heating on the ignition of a combustible solid, Int. J. Engng. Sci. 27 (1989) 1581-1587.
    • (1989) Int. J. Engng. Sci. , vol.27 , pp. 1581-1587
    • Lasseigne, D.G.1    Olmstead, W.E.2
  • 24
    • 0026172508 scopus 로고
    • Ignition or nonignition of a combustible solid with marginal heating
    • [24] D. Glenn Lasseigne, W.E. Olmstead, Ignition or nonignition of a combustible solid with marginal heating, Quat. Appl. Math. 49 (1991) 303-312.
    • (1991) Quat. Appl. Math. , vol.49 , pp. 303-312
    • Lasseigne, D.G.1    Olmstead, W.E.2
  • 25
    • 0025442951 scopus 로고
    • The role of critical exponents in blowup theorems
    • [25] H.A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990) 262-288.
    • (1990) SIAM Rev. , vol.32 , pp. 262-288
    • Levine, H.A.1
  • 28
    • 0002281597 scopus 로고
    • Theory of ignition of a reactive solid by a constant energy flux
    • [28] A. Linan, F.A. Williams, Theory of ignition of a reactive solid by a constant energy flux, Comb. Sci. Technol. 3 (1971) 262-288.
    • (1971) Comb. Sci. Technol. , vol.3 , pp. 262-288
    • Linan, A.1    Williams, F.A.2
  • 29
    • 43949148008 scopus 로고
    • A condition for finite blow-up time for a Volterra integral equation
    • [29] W. Mydlarczyk, A condition for finite blow-up time for a Volterra integral equation, J. Math. Anal. Appl. 181 (1994) 248-253.
    • (1994) J. Math. Anal. Appl. , vol.181 , pp. 248-253
    • Mydlarczyk, W.1
  • 30
    • 0020704808 scopus 로고
    • Ignition of a combustible half space
    • [30] W.E. Olmstead, Ignition of a combustible half space, SIAM J. Appl. Math. 43 (1983) 1-15.
    • (1983) SIAM J. Appl. Math. , vol.43 , pp. 1-15
    • Olmstead, W.E.1
  • 31
    • 0040133458 scopus 로고
    • Asymptotic solution to a class of nonlinear Volterra integral equations
    • [31] W.E. Olmstead, R.A. Handelsman, Asymptotic solution to a class of nonlinear Volterra integral equations, SIAM J. Appl. Math. 22 (1971) 373-384.
    • (1971) SIAM J. Appl. Math. , vol.22 , pp. 373-384
    • Olmstead, W.E.1    Handelsman, R.A.2
  • 32
    • 0016881753 scopus 로고
    • Asymptotic solution to a class of nonlinear Volterra integral equations II
    • [32] W.E. Olmstead, R.A. Handelsman, Asymptotic solution to a class of nonlinear Volterra integral equations II, SIAM J. Appl. Math. 30 (1976) 180-189.
    • (1976) SIAM J. Appl. Math. , vol.30 , pp. 180-189
    • Olmstead, W.E.1    Handelsman, R.A.2
  • 33
    • 0040360735 scopus 로고    scopus 로고
    • The one-dimensional heat equation with a nonlocal initial condition
    • [33] W.E. Olmstead, C.A. Roberts, The one-dimensional heat equation with a nonlocal initial condition, Appl. Math. Lett. 10 (1997) 89-94.
    • (1997) Appl. Math. Lett. , vol.10 , pp. 89-94
    • Olmstead, W.E.1    Roberts, C.A.2
  • 34
    • 0007294102 scopus 로고    scopus 로고
    • Explosion in a diffusive strip due to a source with local and nonlocal features
    • [34] W.E. Olmstead, C.A. Roberts, Explosion in a diffusive strip due to a source with local and nonlocal features, Math. Appl. Anal. 3 (1996) 345-357.
    • (1996) Math. Appl. Anal. , vol.3 , pp. 345-357
    • Olmstead, W.E.1    Roberts, C.A.2
  • 35
    • 0040984140 scopus 로고
    • Quenching for the heat equation with a nonlocal nonlinearity
    • Angell, Cook, Kleinman, Olmstead (Eds.), Philadelphia
    • [35] W.E. Olmstead, C.A. Roberts, Quenching for the heat equation with a nonlocal nonlinearity, in: Angell, Cook, Kleinman, Olmstead (Eds.), Nonlinear Problems in Applied Mathematics SIAM, Philadelphia, 1995, pp. 199-205.
    • (1995) Nonlinear Problems in Applied Mathematics SIAM , pp. 199-205
    • Olmstead, W.E.1    Roberts, C.A.2
  • 36
    • 0001324528 scopus 로고
    • Explosion in a diffusive strip due to a concentrated nonlinear source
    • [36] W.E. Olmstead, C.A. Roberts, Explosion in a diffusive strip due to a concentrated nonlinear source, Meth. Appl. Anal. 1 (1994) 434-445.
    • (1994) Meth. Appl. Anal. , vol.1 , pp. 434-445
    • Olmstead, W.E.1    Roberts, C.A.2
  • 37
    • 0002183950 scopus 로고
    • Coupled Volterra equations with blow-up solutions
    • [37] W.E. Olmstead, C.A. Roberts, K. Deng, Coupled Volterra equations with blow-up solutions, J. Int. Eqns. Appl. 7 (1995) 499-516.
    • (1995) J. Int. Eqns. Appl. , vol.7 , pp. 499-516
    • Olmstead, W.E.1    Roberts, C.A.2    Deng, K.3
  • 38
    • 0040389927 scopus 로고    scopus 로고
    • A method to determine growth rates of nonlinear Volterra equations
    • Corduneanu, Sandberg (Eds.), Gordon and Breach, UK, to appear
    • [38] C.A. Roberts, A method to determine growth rates of nonlinear Volterra equations, in: Corduneanu, Sandberg (Eds.), Volterra Equations and Applications, Gordon and Breach, UK, to appear.
    • Volterra Equations and Applications
    • Roberts, C.A.1
  • 39
    • 0040984138 scopus 로고    scopus 로고
    • Characterizing the blow-up solutions for nonlinear Volterra integral equations
    • [39] C.A. Roberts, Characterizing the blow-up solutions for nonlinear Volterra integral equations, Nonlinear Anal. Theory Meth. Appl. 30 (1997) 923-933.
    • (1997) Nonlinear Anal. Theory Meth. Appl. , vol.30 , pp. 923-933
    • Roberts, C.A.1
  • 40
    • 0001591638 scopus 로고
    • Volterra equations which model explosion in a diffusive medium
    • [40] C.A. Roberts, D.G. Lasseigne, W.E. Olmstead, Volterra equations which model explosion in a diffusive medium, J. Int. Eqns. Appl. 5 (1993) 531-546.
    • (1993) J. Int. Eqns. Appl. , vol.5 , pp. 531-546
    • Roberts, C.A.1    Lasseigne, D.G.2    Olmstead, W.E.3
  • 41
    • 0001074918 scopus 로고    scopus 로고
    • Growth rates for blow-up solutions of nonlinear Volterra equations
    • [41] C.A. Roberts, W.E. Olmstead, Growth rates for blow-up solutions of nonlinear Volterra equations, Quart. Appl. Math. 54 (1996) 153-159.
    • (1996) Quart. Appl. Math. , vol.54 , pp. 153-159
    • Roberts, C.A.1    Olmstead, W.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.