메뉴 건너뛰기




Volumn 7, Issue 8, 1998, Pages 1182-1197

Fast road classification and orientation estimation using omni-view images and neural networks

Author keywords

Neural network; Omnidirectional vision; Road image understanding; Rotation invariance; Visual navigation

Indexed keywords

ADAPTIVE SYSTEMS; ALGORITHMS; BACKPROPAGATION; COMPUTER AIDED DESIGN; COMPUTER VISION; DECISION THEORY; FEATURE EXTRACTION; IMAGE ANALYSIS; IMAGE SENSORS; LEARNING SYSTEMS; MOBILE ROBOTS; NEURAL NETWORKS;

EID: 0032138134     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/83.704310     Document Type: Article
Times cited : (22)

References (22)
  • 1
    • 0028736662 scopus 로고
    • Three dimensional line following using omnidirectional vision
    • R. T. Elkins and E. L. Hall, "Three dimensional line following using omnidirectional vision," Proc. SPIE, vol. 2354, pp. 130-144, 1994.
    • (1994) Proc. SPIE , vol.2354 , pp. 130-144
    • Elkins, R.T.1    Hall, E.L.2
  • 2
    • 0028380416 scopus 로고
    • Real-time omnidirectional image sensor (COPIS) for vision-guided navigation
    • Feb.
    • Y. Yagi, S. Kawato, and S. Tsuji, "Real-time omnidirectional image sensor (COPIS) for vision-guided navigation," IEEE Trans. Robot. Automat., vol. 1, pp. 11-27, Feb. 1994.
    • (1994) IEEE Trans. Robot. Automat. , vol.1 , pp. 11-27
    • Yagi, Y.1    Kawato, S.2    Tsuji, S.3
  • 5
    • 8644282735 scopus 로고
    • A network for motion perception
    • Y. T. Zhou and R. A. Chellappa, "A network for motion perception," in Proc. IJCNN, 1990, pp. 11841-851.
    • (1990) Proc. IJCNN , pp. 11841-11851
    • Zhou, Y.T.1    Chellappa, R.A.2
  • 6
    • 8644234174 scopus 로고
    • Internal representation of a neural network that detects local motion
    • E. Atsumi et al., "Internal representation of a neural network that detects local motion," in Proc. IJCNN, 1993, pp. 198-201.
    • (1993) Proc. IJCNN , pp. 198-201
    • Atsumi, E.1
  • 10
    • 0030282384 scopus 로고    scopus 로고
    • Neural networks for omni-view road image understanding
    • July
    • Z. G. Zhu and G. Y. Xu, "Neural networks for omni-view road image understanding," J. Comput. Sci. Technol., vol. 11, no. 4, July 1996.
    • (1996) J. Comput. Sci. Technol. , vol.11 , Issue.4
    • Zhu, Z.G.1    Xu, G.Y.2
  • 11
    • 0029728163 scopus 로고    scopus 로고
    • Combining rotation-invariance images and neural networks for road scene understanding
    • Z. G. Zhu, H. J. Xi, and G. Y. Xu, "Combining rotation-invariance images and neural networks for road scene understanding," Proc. IEEE ICNN, 1996, pp. 1732-1737.
    • (1996) Proc. IEEE ICNN , pp. 1732-1737
    • Zhu, Z.G.1    Xi, H.J.2    Xu, G.Y.3
  • 13
    • 0028387050 scopus 로고
    • The basic ideas in neural networks
    • Mar.
    • D. E. Rumelhart, B. Widrow, and M. A. Lehr, "The basic ideas in neural networks," Commun. ACM, vol. 37, pp. 87-91, Mar. 1994.
    • (1994) Commun. ACM , vol.37 , pp. 87-91
    • Rumelhart, D.E.1    Widrow, B.2    Lehr, M.A.3
  • 15
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • Mar.
    • A. K. Jain, J. Mao, and K. M. Mohiuddin, "Artificial neural networks: A tutorial," IEEE Trans. Comput., vol. 29, pp. 31-44, Mar. 1996.
    • (1996) IEEE Trans. Comput. , vol.29 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 18
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • Oct.
    • G. G. Towell and J. W. Sharilik, "Extracting refined rules from knowledge-based neural networks," Mach. Learn., vol. 13, pp. 71-101, Oct. 1993.
    • (1993) Mach. Learn. , vol.13 , pp. 71-101
    • Towell, G.G.1    Sharilik, J.W.2
  • 19
    • 0030109008 scopus 로고    scopus 로고
    • Symbolic representation of neural networks
    • Mar.
    • R. Setiono and H. Liu, "Symbolic representation of neural networks," IEEE Trans. Comput., vol. 29, pp. 71-78, Mar. 1996.
    • (1996) IEEE Trans. Comput. , vol.29 , pp. 71-78
    • Setiono, R.1    Liu, H.2
  • 20
    • 0014536196 scopus 로고
    • Some networks that can learn, remember and reproduce any number of complicated space-time pattern, I
    • S. Grossberg, "Some networks that can learn, remember and reproduce any number of complicated space-time pattern, I," J. Math. Mechan., vol. 19, pp. 53-91, 1969.
    • (1969) J. Math. Mechan. , vol.19 , pp. 53-91
    • Grossberg, S.1
  • 21
    • 0014794401 scopus 로고
    • Some networks that can learn, remember and reproduce any number of complicated space-time pattern, II
    • _, "Some networks that can learn, remember and reproduce any number of complicated space-time pattern, II," Stud. Appl. Math., vol. 49, pp. 135-166, 1970.
    • (1970) Stud. Appl. Math. , vol.49 , pp. 135-166


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.