메뉴 건너뛰기




Volumn 7, Issue 8, 1998, Pages 1165-1181

Quantification and segmentation of brain tissues from MR images: A probabilistic neural network approach

Author keywords

Finite mixture models; Image segmentation; Information theoretic criteria; Model estimation; Probabilistic neural networks; Relaxation algorithm

Indexed keywords

ALGORITHMS; BRAIN; CONSTRAINT THEORY; GRAPH THEORY; IMAGE SEGMENTATION; MATHEMATICAL MODELS; MEDICAL IMAGING; NEURAL NETWORKS; TISSUE;

EID: 0032138057     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/83.704309     Document Type: Article
Times cited : (82)

References (55)
  • 1
    • 0027659237 scopus 로고
    • Quantification of MR brain images by mixture density and partial volume modeling
    • Sept.
    • P. Santago and H. D. Gage, "Quantification of MR brain images by mixture density and partial volume modeling," IEEE Trans. Med. Imag., vol. 12, pp. 566-574, Sept. 1993.
    • (1993) IEEE Trans. Med. Imag. , vol.12 , pp. 566-574
    • Santago, P.1    Gage, H.D.2
  • 2
    • 21144480842 scopus 로고
    • Segmentation of magnetic resonance brain images using analog constraint satisfaction neural networks
    • H. H. Barrett and A. F. Gmitro, Eds. Berlin, Germany: Springer-Verlag
    • A. J. Worth and D. N. Kennedy, "Segmentation of magnetic resonance brain images using analog constraint satisfaction neural networks," in Information Processing in Medical Imaging, H. H. Barrett and A. F. Gmitro, Eds. Berlin, Germany: Springer-Verlag, 1993, pp. 225-243.
    • (1993) Information Processing in Medical Imaging , pp. 225-243
    • Worth, A.J.1    Kennedy, D.N.2
  • 3
    • 0026220222 scopus 로고
    • Partial volume tissue classification of multichannel magnetic resonance images - A mixture model
    • Sept.
    • H. S. Choi, D. R. Haynor, and Y. Kim, "Partial volume tissue classification of multichannel magnetic resonance images - A mixture model," IEEE Trans. Med. Imag., vol. 10, pp. 395-407, Sept. 1994.
    • (1994) IEEE Trans. Med. Imag. , vol.10 , pp. 395-407
    • Choi, H.S.1    Haynor, D.R.2    Kim, Y.3
  • 4
    • 0025000563 scopus 로고
    • Three-dimensional segmentation of MR images of the head using probability and connectivity
    • H. E. Cline, W. E. Lorensen, R. Kikinis, and R. Jolesz, "Three-dimensional segmentation of MR images of the head using probability and connectivity," J. Comp. Assist. Tomog., vol. 14, pp. 1037-1045, 1990.
    • (1990) J. Comp. Assist. Tomog. , vol.14 , pp. 1037-1045
    • Cline, H.E.1    Lorensen, W.E.2    Kikinis, R.3    Jolesz, R.4
  • 5
    • 0028494865 scopus 로고
    • Parameter estimation and tissue segmentation from multispectral MR images
    • Sept.
    • Z. Liang, J. R. MacFall, and D. P. Harrington, "Parameter estimation and tissue segmentation from multispectral MR images," IEEE Trans. Med. Imag., vol. 13, pp. 441-449, Sept. 1994.
    • (1994) IEEE Trans. Med. Imag. , vol.13 , pp. 441-449
    • Liang, Z.1    MacFall, J.R.2    Harrington, D.P.3
  • 6
    • 0030215237 scopus 로고    scopus 로고
    • The application of competitive Hopfield neural network to medical image segmentation
    • Aug.
    • K. S. Cheng, J. S. Lin, and C. W. Mao, "The application of competitive Hopfield neural network to medical image segmentation," IEEE Trans. Med. Imag., vol. 15, pp. 560-567, Aug. 1996.
    • (1996) IEEE Trans. Med. Imag. , vol.15 , pp. 560-567
    • Cheng, K.S.1    Lin, J.S.2    Mao, C.W.3
  • 7
    • 33747974162 scopus 로고
    • A probabilistic neural network based image segmentation network for magnetic resonance images
    • Baltimore, MD
    • M. Morrison and Y. Attikiouzel, "A probabilistic neural network based image segmentation network for magnetic resonance images," in Proc. Conf. Neural Networks, Baltimore, MD, 1992, vol. 3, pp. 60-65.
    • (1992) Proc. Conf. Neural Networks , vol.3 , pp. 60-65
    • Morrison, M.1    Attikiouzel, Y.2
  • 8
    • 0027625486 scopus 로고
    • Segmentation of medical images through competitive learning
    • A. P. Dhawan and L. Arata, "Segmentation of medical images through competitive learning," Comput. Meth. Prog. Biomed., vol. 40, pp. 203-215, 1993.
    • (1993) Comput. Meth. Prog. Biomed. , vol.40 , pp. 203-215
    • Dhawan, A.P.1    Arata, L.2
  • 9
    • 0026925678 scopus 로고
    • A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
    • L. O. Hall et al., "A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain," IEEE Trans. Neural Networks, vol. 3, pp. 672-682, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 672-682
    • Hall, L.O.1
  • 10
    • 0010406939 scopus 로고
    • Quantification of MR brain images by a probabilistic self-organizing map
    • Nov.
    • Y. Wang, T. Adali, C. M. Lau, and Z. Szabo, "Quantification of MR brain images by a probabilistic self-organizing map," Radiology, vol. 197, pp. 252-253, Nov. 1995.
    • (1995) Radiology , vol.197 , pp. 252-253
    • Wang, Y.1    Adali, T.2    Lau, C.M.3    Szabo, Z.4
  • 11
    • 0032046549 scopus 로고    scopus 로고
    • Quantitative analysis of MR brain image sequences by adaptive self-organizing finite mixtures
    • Y. Wang, T. Adali, C.-M. Lau, and S. Y. Kung, "Quantitative analysis of MR brain image sequences by adaptive self-organizing finite mixtures," J. VLSI Tech. Signal Process., vol. 8, pp. 219-239, 1998.
    • (1998) J. VLSI Tech. Signal Process. , vol.8 , pp. 219-239
    • Wang, Y.1    Adali, T.2    Lau, C.-M.3    Kung, S.Y.4
  • 13
    • 0026895365 scopus 로고
    • Constraint satisfaction neural networks for image segmentation
    • W. C. Lin, E. C. K. Tsao, and C. T. Chen, "Constraint satisfaction neural networks for image segmentation," Pattern Recognit., vol. 25, pp. 679-693, 1992.
    • (1992) Pattern Recognit. , vol.25 , pp. 679-693
    • Lin, W.C.1    Tsao, E.C.K.2    Chen, C.T.3
  • 14
    • 33747740840 scopus 로고
    • Probabilistic neural networks for parameter quantification in medical image analysis
    • J. Vossoughi, Ed.
    • Y. Wang and T. Adali, "Probabilistic neural networks for parameter quantification in medical image analysis," in Biomedical Engineering Recent Development, J. Vossoughi, Ed., 1994.
    • (1994) Biomedical Engineering Recent Development
    • Wang, Y.1    Adali, T.2
  • 17
    • 0031122341 scopus 로고    scopus 로고
    • Conditional distribution learning with neural networks and its application to channel equalization
    • Apr.
    • T. Adali, X. Liu, and M. K. Sonmez, "Conditional distribution learning with neural networks and its application to channel equalization," IEEE Trans. Signal Processing, vol. 45, pp. 1051-1064, Apr. 1997.
    • (1997) IEEE Trans. Signal Processing , vol.45 , pp. 1051-1064
    • Adali, T.1    Liu, X.2    Sonmez, M.K.3
  • 18
    • 0010402491 scopus 로고    scopus 로고
    • Image quantification and the minimum conditional bias/variance criterion
    • Princeton, NJ, Mar. 20-22
    • Y. Wang, "Image quantification and the minimum conditional bias/variance criterion," in Proc. 30th Conf. Information Science and Systems, Princeton, NJ, Mar. 20-22, 1996, pp. 1061-1064.
    • (1996) Proc. 30th Conf. Information Science and Systems , pp. 1061-1064
    • Wang, Y.1
  • 19
    • 84997610963 scopus 로고
    • A new stochastic model-based image segmentation technique for MR images
    • Austin, TX
    • Y. Wang and T. Lei, "A new stochastic model-based image segmentation technique for MR images," Proc. 1st IEEE Int. Conf. Image Processing, Austin, TX, 1994, pp. 182-185.
    • (1994) Proc. 1st IEEE Int. Conf. Image Processing , pp. 182-185
    • Wang, Y.1    Lei, T.2
  • 20
    • 0024131143 scopus 로고
    • The information content of MR images
    • M. Fuderer, "The information content of MR images," IEEE Trans. Med. Imag., vol. 7, pp. 368-380, 1988.
    • (1988) IEEE Trans. Med. Imag. , vol.7 , pp. 368-380
    • Fuderer, M.1
  • 22
    • 0026104394 scopus 로고
    • Multiple resolution segmentation of texture images
    • Feb.
    • C. Bouman and B. Liu, "Multiple resolution segmentation of texture images," IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 99-113, Feb. 1991.
    • (1991) IEEE Trans. Pattern Anal. Machine Intell. , vol.13 , pp. 99-113
    • Bouman, C.1    Liu, B.2
  • 23
    • 0010536804 scopus 로고
    • Comments on 'application of the conditional population-mixture model to image segmentation'
    • Sept.
    • D. M. Titterington, "Comments on 'application of the conditional population-mixture model to image segmentation'," IEEE Trans. Pattern Anal. Machine Intell, vol. 6, pp. 656-658, Sept. 1984.
    • (1984) IEEE Trans. Pattern Anal. Machine Intell , vol.6 , pp. 656-658
    • Titterington, D.M.1
  • 24
    • 77956798605 scopus 로고
    • Minimax entropy estimation of models for vector processes
    • New York: Academic
    • J. Rissanen, "Minimax entropy estimation of models for vector processes," System Identification, Advances and Case Studies. New York: Academic, 1976, pp. 97-119.
    • (1976) System Identification, Advances and Case Studies , pp. 97-119
    • Rissanen, J.1
  • 30
    • 0029217988 scopus 로고
    • On the dynamics of the LRE Algorithm: A distribution learning approach to adaptive equalization
    • Detroit, MI
    • T. Adali, M. K. Sönmez, and K. Patel, "On the dynamics of the LRE Algorithm: A distribution learning approach to adaptive equalization," in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Detroit, MI, 1995, pp. 929-932.
    • (1995) Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing , pp. 929-932
    • Adali, T.1    Sönmez, M.K.2    Patel, K.3
  • 31
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Dec.
    • H. Akaike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. 19, Dec. 1974.
    • (1974) IEEE Trans. Automat. Contr. , vol.19
    • Akaike, H.1
  • 32
    • 0025505758 scopus 로고
    • A model-fitting approach to cluster validation with application to stochastic model-based image segmentation
    • Oct.
    • J. Zhang and J. M. Modestino, "A model-fitting approach to cluster validation with application to stochastic model-based image segmentation," IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 1009-1017, Oct. 1990.
    • (1990) IEEE Trans. Pattern Anal. Machine Intell. , vol.12 , pp. 1009-1017
    • Zhang, J.1    Modestino, J.M.2
  • 33
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen, "A universal prior for integers and estimation by minimum description length," Ann. Stat., vol. 11, 1983.
    • (1983) Ann. Stat. , vol.11
    • Rissanen, J.1
  • 34
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, pp. 1-52, 1992.
    • (1992) Neural Comput. , vol.4 , pp. 1-52
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 35
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • May
    • E. T. Jaynes, "Information theory and statistical mechanics," Phys. Rev., vol. 108, pp. 620-630/171-190, May 1957.
    • (1957) Phys. Rev. , vol.108 , pp. 620-630
    • Jaynes, E.T.1
  • 37
    • 38249007369 scopus 로고
    • Cramer-Rao Bounds for the estimation of normal mixtures
    • L. I. Perlovsky, "Cramer-Rao Bounds for the estimation of normal mixtures," Pattern Recognit. Lett., vol. 10, pp. 141-148, 1989.
    • (1989) Pattern Recognit. Lett. , vol.10 , pp. 141-148
    • Perlovsky, L.I.1
  • 38
    • 0032301582 scopus 로고    scopus 로고
    • Data mapping by probabilistic modular network and information theoretic criteria
    • to be published
    • Y. Wang, S.-H. Lin, H. Li, and S.-Y. Kung, "Data mapping by probabilistic modular network and information theoretic criteria," IEEE Trans. Signal Processing, 1998, to be published.
    • (1998) IEEE Trans. Signal Processing
    • Wang, Y.1    Lin, S.-H.2    Li, H.3    Kung, S.-Y.4
  • 39
    • 0025957944 scopus 로고
    • Maximum likelihood neural networks for sensor fusion and adaptive classification
    • L. Perlovsky and M. McManus, "Maximum likelihood neural networks for sensor fusion and adaptive classification," Neural Networks, vol. 4, pp. 89-102, 1991.
    • (1991) Neural Networks , vol.4 , pp. 89-102
    • Perlovsky, L.1    McManus, M.2
  • 41
    • 0025494624 scopus 로고
    • Sequential algorithms for parameter estimation based on the Kullback-Leibler information measure
    • E. Weinstein, M. Feder, and A. V. Oppenheim, "Sequential algorithms for parameter estimation based on the Kullback-Leibler information measure," IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 1652-1654, 1990.
    • (1990) IEEE Trans. Acoust., Speech, Signal Processing , vol.38 , pp. 1652-1654
    • Weinstein, E.1    Feder, M.2    Oppenheim, A.V.3
  • 42
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R. A. Jacobs, "Increased rates of convergence through learning rate adaptation," Neural Networks, vol. 1, pp. 295-307, 1988.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 43
    • 0000607091 scopus 로고    scopus 로고
    • Automatic threshold selection by histogram quantization
    • Apr.
    • Y. Wang, T. Adali, and B. Lo, "Automatic threshold selection by histogram quantization," SPIE J. Biomed. Opt., vol. 2, pp. 211-217, Apr. 1997.
    • (1997) SPIE J. Biomed. Opt. , vol.2 , pp. 211-217
    • Wang, Y.1    Adali, T.2    Lo, B.3
  • 44
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • R. A. Redner and N. M. Walker, "Mixture densities, maximum likelihood and the EM algorithm," SIAM Rev., vol. 26, pp. 195-239, 1984.
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, N.M.2
  • 45
    • 33747721525 scopus 로고    scopus 로고
    • Morphological filtering and model-based segmentation of masses on mammographic images
    • to be published
    • H. Li, Y. Wang, K.-J. Liu, and S.-H. Lo, "Morphological filtering and model-based segmentation of masses on mammographic images," IEEE Trans. Med. Imaging, to be published.
    • IEEE Trans. Med. Imaging
    • Li, H.1    Wang, Y.2    Liu, K.-J.3    Lo, S.-H.4
  • 46
    • 0010320070 scopus 로고    scopus 로고
    • Detection of masses on mammograms using advanced segmentation techniques and an HMOE classifier
    • Amsterdam, The Netherlands: Elsevier
    • H. Li, et al., "Detection of masses on mammograms using advanced segmentation techniques and an HMOE classifier," in Digital Mammography. Amsterdam, The Netherlands: Elsevier, 1996.
    • (1996) Digital Mammography
    • Li, H.1
  • 47
    • 0028724624 scopus 로고
    • Morphometric analysis of white matter lesions in MR images: Method and validation
    • Dec.
    • A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer, "Morphometric analysis of white matter lesions in MR images: Method and validation," IEEE Trans. Med. Imag., vol. 13, pp. 716-724, Dec. 1994.
    • (1994) IEEE Trans. Med. Imag. , vol.13 , pp. 716-724
    • Zijdenbos, A.P.1    Dawant, B.M.2    Margolin, R.A.3    Palmer, A.C.4
  • 49
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • H. Gish, "A probabilistic approach to the understanding and training of neural network classifiers," in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, 1990, pp. 1361-1364.
    • (1990) Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing , pp. 1361-1364
    • Gish, H.1
  • 50
    • 0029376086 scopus 로고
    • Measure fields for function approximation
    • J. L. Marroquin, "Measure fields for function approximation," IEEE Trans. Neural Networks., vol. 6, pp. 1081-1090, 1995.
    • (1995) IEEE Trans. Neural Networks. , vol.6 , pp. 1081-1090
    • Marroquin, J.L.1
  • 54
    • 33747728922 scopus 로고    scopus 로고
    • Dept. Nuclear Med., Johns Hopkins Medical Institutions, Baltimore, MD, private communication
    • Z. Szabo, Dept. Nuclear Med., Johns Hopkins Medical Institutions, Baltimore, MD, private communication.
    • Szabo, Z.1
  • 55
    • 33747693264 scopus 로고    scopus 로고
    • M.D., Dept. Radiology, ISIS Ctr., Georgetown Univ. Med. Ctr., Washington, DC, private communication
    • M. Freedman, M.D., Dept. Radiology, ISIS Ctr., Georgetown Univ. Med. Ctr., Washington, DC, private communication.
    • Freedman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.