메뉴 건너뛰기




Volumn 92, Issue 3-4, 1998, Pages 337-351

Convergence to equilibrium of random Ising models in the Griffiths phase

Author keywords

Diluted ising model; FK representation; Glauber dynamics; Griffiths singularities; Random spin systems; Relaxation time

Indexed keywords


EID: 0032137944     PISSN: 00224715     EISSN: None     Source Type: Journal    
DOI: 10.1023/a:1023077101354     Document Type: Article
Times cited : (9)

References (22)
  • 1
    • 0000136970 scopus 로고
    • Sharpness of the phase transition in percolation models
    • M. Aizenman and D. J. Barsky, Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108:489-256 (1987).
    • (1987) Commun. Math. Phys. , vol.108 , pp. 489-1256
    • Aizenman, M.1    Barsky, D.J.2
  • 2
    • 34250105066 scopus 로고
    • The phase transition in a general class of Ising-type models is sharp
    • M. Aizenman, D. J. Barsky, and R. Fernandez, The phase transition in a general class of Ising-type models is sharp, J. Stat. Phys. 47(3/4):343 (1987).
    • (1987) J. Stat. Phys. , vol.47 , Issue.3-4 , pp. 343
    • Aizenman, M.1    Barsky, D.J.2    Fernandez, R.3
  • 3
    • 0031518732 scopus 로고    scopus 로고
    • Non-perturbative criteria for Gibbsian uniqueness
    • K. S. Alexander and L. Chayes, Non-perturbative criteria for Gibbsian uniqueness, Commun. Math. Phys. 189:447-464 (1997).
    • (1997) Commun. Math. Phys. , vol.189 , pp. 447-464
    • Alexander, K.S.1    Chayes, L.2
  • 5
    • 0001020412 scopus 로고
    • Exponential decay of connectivity in the two-dimensional Ising model
    • J. Chayes, L. Chayes, and R. H. Schonmann, Exponential decay of connectivity in the two-dimensional Ising model, J. Stat. Phys. 49:433 (1987).
    • (1987) J. Stat. Phys. , vol.49 , pp. 433
    • Chayes, J.1    Chayes, L.2    Schonmann, R.H.3
  • 6
    • 0030491030 scopus 로고    scopus 로고
    • On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point
    • F. Cesi, G. Guadagni, F. Martinelli, and R. H. Schonmann, On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point, J. Stat. Phys. 85(1/2):55-102 (1996).
    • (1996) J. Stat. Phys. , vol.85 , Issue.1-2 , pp. 55-102
    • Cesi, F.1    Guadagni, G.2    Martinelli, F.3    Schonmann, R.H.4
  • 7
    • 0031519926 scopus 로고    scopus 로고
    • Relaxation of disordered magnets in the Griffiths regime
    • F. Cesi, C. Maes, and F. Martinelli, Relaxation of disordered magnets in the Griffiths regime, Commun. Math. Phys. 188:135-173 (1997).
    • (1997) Commun. Math. Phys. , vol.188 , pp. 135-173
    • Cesi, F.1    Maes, C.2    Martinelli, F.3
  • 8
    • 0040454786 scopus 로고    scopus 로고
    • Relaxation to equilibrium for two dimensional disordered Ising systems in the Griffiths phase
    • F. Cesi, C. Maes, and F. Martinelli, Relaxation to equilibrium for two dimensional disordered Ising systems in the Griffiths phase, Commun. Math. Phys. 189:323-335 (1997).
    • (1997) Commun. Math. Phys. , vol.189 , pp. 323-335
    • Cesi, F.1    Maes, C.2    Martinelli, F.3
  • 10
    • 0041855748 scopus 로고
    • On the random cluster model. I. Introduction and relation to other models
    • C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models, Physica 57:536-564 (1972).
    • (1972) Physica , vol.57 , pp. 536-564
    • Fortuin, C.M.1    Kasteleyn, P.W.2
  • 11
    • 0014667053 scopus 로고
    • Non-analytic behaviour above the critical point in a random Ising ferromagnet
    • R. Griffiths, Non-analytic behaviour above the critical point in a random Ising ferromagnet, Phys. Rev. Lett. 23:17 (1969).
    • (1969) Phys. Rev. Lett. , vol.23 , pp. 17
    • Griffiths, R.1
  • 13
    • 21344482893 scopus 로고
    • Coexistence of infinite (*)-clusters II: Ising percolation in two dimension
    • Y. Higuchi, Coexistence of infinite (*)-clusters II: Ising percolation in two dimension, Probab. Theory Rel. Fields 97:1 (1993).
    • (1993) Probab. Theory Rel. Fields , vol.97 , pp. 1
    • Higuchi, Y.1
  • 14
    • 21344496131 scopus 로고
    • Large deviation for the 2D Ising model: A lower bound without cluster expansion
    • D. Ioffe, Large deviation for the 2D Ising model: a lower bound without cluster expansion, J. Stat. Phys. 74(1/2):411 (1994).
    • (1994) J. Stat. Phys. , vol.74 , Issue.1-2 , pp. 411
    • Ioffe, D.1
  • 15
    • 21844490341 scopus 로고
    • c for the Ising model in two dimension
    • c for the Ising model in two dimension, Probab. Theory Related Fields 102:313-330 (1995).
    • (1995) Probab. Theory Related Fields , vol.102 , pp. 313-330
    • Ioffe, D.1
  • 18
    • 21344495138 scopus 로고
    • Approach to equilibrium of Glauber dynamics in the one phase region I: The attractive case
    • F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I: The attractive case, Commun. Math. Phys. 161 (1994).
    • (1994) Commun. Math. Phys. , vol.161
    • Martinelli, F.1    Olivieri, E.2
  • 19
    • 0039389612 scopus 로고
    • Some rigorous results on the phase diagram of the dilute Ising model
    • E. Olivieri, F. Perez, and S. Goulart-Rosa, Jr., Some rigorous results on the phase diagram of the dilute Ising model, Phys. Lett. 94A(6/7):309 (1983).
    • (1983) Phys. Lett. , vol.94 A , Issue.6-7 , pp. 309
    • Olivieri, E.1    Perez, F.2    Goulart-Rosa S., Jr.3
  • 20
    • 0042416901 scopus 로고    scopus 로고
    • Surface order large deviations for Ising, Potts and percolation models
    • A. Pisztora, Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Rel. Fields 104:427 (1996).
    • (1996) Probab. Theory Rel. Fields , vol.104 , pp. 427
    • Pisztora, A.1
  • 21
    • 0000981771 scopus 로고
    • Large deviations and phase separation in the two-dimensional Ising model
    • C. E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helvetica Physica Acta 64:953 (1991).
    • (1991) Helvetica Physica Acta , vol.64 , pp. 953
    • Pfister, C.E.1
  • 22
    • 0000798606 scopus 로고
    • Second order large deviation estimates for ferromagnetic systems in the phase coexistence region
    • R. H. Schonmann, Second order large deviation estimates for ferromagnetic systems in the phase coexistence region, Commun. Math. Phys. 112:409 (1987).
    • (1987) Commun. Math. Phys. , vol.112 , pp. 409
    • Schonmann, R.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.