-
1
-
-
33744749425
-
Symplectic structures associated to Poisson Lie groups
-
[1] A.Yu. Alekseev, A.Z. Malkin, Symplectic structures associated to Poisson Lie groups, Comm. Math. Phys. 162 (1994) 147-173.
-
(1994)
Comm. Math. Phys.
, vol.162
, pp. 147-173
-
-
Alekseev, A.Yu.1
Malkin, A.Z.2
-
2
-
-
21844488766
-
Poisson structures on the cotangent bundle of a Lie group or a principle bundle and their reductions
-
[2] D.V. Alekseevsky, J. Grabowski, G. Marmo, P.W. Michor, Poisson structures on the cotangent bundle of a Lie group or a principle bundle and their reductions, J. Math. Phys. 35 (1994) 4909-4928.
-
(1994)
J. Math. Phys.
, vol.35
, pp. 4909-4928
-
-
Alekseevsky, D.V.1
Grabowski, J.2
Marmo, G.3
Michor, P.W.4
-
3
-
-
0010078204
-
Completely integrabte systems: A generalization
-
to appear
-
[3] D. Alekseevsky, J. Grabowski, G. Marmo, P.W. Michor, Completely integrabte systems: a generalization, Modern Phys. Lett. A., to appear,
-
Modern Phys. Lett. A.
-
-
Alekseevsky, D.1
Grabowski, J.2
Marmo, G.3
Michor, P.W.4
-
4
-
-
0010081469
-
A characteristic property of simple Lie algebras
-
[4] V.V. Astrakhantsev, A characteristic property of simple Lie algebras, Funct. Anal. Appl. 19 (1985) 65-66.
-
(1985)
Funct. Anal. Appl.
, vol.19
, pp. 65-66
-
-
Astrakhantsev, V.V.1
-
5
-
-
34250283110
-
Decomposability of metrizable Lie algebras
-
[5] V.V. Astrakhantsev, Decomposability of metrizable Lie algebras, Funct. Anal. Appl. 12 (1978) 64-65.
-
(1978)
Funct. Anal. Appl.
, vol.12
, pp. 64-65
-
-
Astrakhantsev, V.V.1
-
6
-
-
34250152335
-
On the solutions of the classical Yang-Baxter equation
-
[6] A.A. Belavin, V.G. Drinfeld, On the solutions of the classical Yang-Baxter equation, Funct. Anal. Appl. 16 (1982) 159.
-
(1982)
Funct. Anal. Appl.
, vol.16
, pp. 159
-
-
Belavin, A.A.1
Drinfeld, V.G.2
-
8
-
-
0012982377
-
Nondegenerate invariant bilinear forms on non-associative algebras
-
Preprint, Freiburg THEP 92/3; to appear
-
[8] M. Bordemann, Nondegenerate invariant bilinear forms on non-associative algebras. Preprint, Freiburg THEP 92/3; Acta. Math. Univ. Comenianae, to appear.
-
Acta. Math. Univ. Comenianae
-
-
Bordemann, M.1
-
9
-
-
0002014118
-
Some remarks on the classification of Poisson Lie groups, symplectic geometry and quantization
-
Y. Maeda, H. Omori, A. Weinstein (Eds.), AMS, Providence
-
[9] M. Cahen, S. Gutt, J. Rawnsley, Some remarks on the classification of Poisson Lie groups, Symplectic Geometry and Quantization, in: Y. Maeda, H. Omori, A. Weinstein (Eds.), Contemporary Mathematics, Vol. 179, AMS, Providence, 1994, pp. 1-16.
-
(1994)
Contemporary Mathematics
, vol.179
, pp. 1-16
-
-
Cahen, M.1
Gutt, S.2
Rawnsley, J.3
-
10
-
-
0001603842
-
Hamiltonian structures on Lie groups. Lie bialgebras, and the geometric meaning of Yang-Baxter equations
-
[10] V.I. Drinfeld, Hamiltonian structures on Lie groups. Lie bialgebras, and the geometric meaning of Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268 (2) (1983) 285-287.
-
(1983)
Dokl. Akad. Nauk SSSR
, vol.268
, Issue.2
, pp. 285-287
-
-
Drinfeld, V.I.1
-
11
-
-
0000481618
-
Quantum groups
-
Berkeley, California, USA, AMS, Providence
-
[11] V.I. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986 vol. 1, AMS, Providence, 1987, pp. 798-820.
-
(1986)
Proceedings of the International Congress of Mathematicians
, vol.1
, pp. 798-820
-
-
Drinfeld, V.I.1
-
12
-
-
0000623798
-
Une propriété de la représentation coadjointe d'une algébre de Lie
-
[12] M. Duffo, M. Vergne, Une propriété de la représentation coadjointe d'une algébre de Lie, C.R. Acad. Sci. Paris Sér. A-B 268 (1969) A583-A585.
-
(1969)
C.R. Acad. Sci. Paris Sér. A-B
, vol.268
-
-
Duffo, M.1
Vergne, M.2
-
15
-
-
0005215531
-
Analogues of objects of the Lie group theory for non-linear Poisson brackets
-
[15] M.V. Karasev, Analogues of objects of the Lie group theory for non-linear Poisson brackets, Soviet Mat. Izviestia 28 (1987) 497-527.
-
(1987)
Soviet Mat. Izviestia
, vol.28
, pp. 497-527
-
-
Karasev, M.V.1
-
16
-
-
0003827769
-
-
Springer, Berlin
-
[16] J. Koläř, J. Slovák, P.W. Michor, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
-
(1993)
Natural Operations in Differential Geometry
-
-
Koläř, J.1
Slovák, J.2
Michor, P.W.3
-
17
-
-
0000461625
-
Modules et cohomologies des bigebres de Lie
-
[17] P.B.A. Lecomte, C. Roger, Modules et cohomologies des bigebres de Lie, C.R. Acad. Sci. Paris 310 (1990) 405-410; (Note rectificative), C.R. Acad. Sci. Paris 311 (1990) 893-894.
-
(1990)
C.R. Acad. Sci. Paris
, vol.310
, pp. 405-410
-
-
Lecomte, P.B.A.1
Roger, C.2
-
18
-
-
0010188328
-
Note rectificative
-
[17] P.B.A. Lecomte, C. Roger, Modules et cohomologies des bigebres de Lie, C.R. Acad. Sci. Paris 310 (1990) 405-410; (Note rectificative), C.R. Acad. Sci. Paris 311 (1990) 893-894.
-
(1990)
C.R. Acad. Sci. Paris
, vol.311
, pp. 893-894
-
-
-
19
-
-
0001645828
-
Dynamical aspects of Lie-Poisson structures
-
[18] F. Lizzi, G. Marmo, G. Sparano, P. Vitale, Dynamical aspects of Lie-Poisson structures, Modern Phys. Lett. A 8 (1993) 2973-2987.
-
(1993)
Modern Phys. Lett. A
, vol.8
, pp. 2973-2987
-
-
Lizzi, F.1
Marmo, G.2
Sparano, G.3
Vitale, P.4
-
20
-
-
84972494174
-
Generalized Yang-Baxter equations, Koszul Operators and Poisson Lie groups
-
[19] Z.-Ju Liu, M. Qian, Generalized Yang-Baxter equations, Koszul Operators and Poisson Lie groups, J. Diff. Geom. 35 (1992) 399-414.
-
(1992)
J. Diff. Geom.
, vol.35
, pp. 399-414
-
-
Liu, Z.-Ju.1
Qian, M.2
-
22
-
-
84972494622
-
Poisson Lie groups, dressing transformations, and Bruhat decompositions
-
[21] J.-H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Diff. Geom. 31 (1990) 501-526.
-
(1990)
J. Diff. Geom.
, vol.31
, pp. 501-526
-
-
Lu, J.-H.1
Weinstein, A.2
-
23
-
-
84973999031
-
Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations
-
[22] S. Majid, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations, Pac. J. Math. 141 (1990) 311-332.
-
(1990)
Pac. J. Math.
, vol.141
, pp. 311-332
-
-
Majid, S.1
-
24
-
-
0001861942
-
Poisson Lie group symmetries for the isotropic rotator
-
[23] G. Marmo, A. Simoni, A. Stern, Poisson Lie group symmetries for the isotropic rotator, Internay. J. Mod. Phys. A 10 (1995) 99-114.
-
(1995)
Internay. J. Mod. Phys. A
, vol.10
, pp. 99-114
-
-
Marmo, G.1
Simoni, A.2
Stern, A.3
-
28
-
-
0010188329
-
The cohomology of the diffeomorphism group is a Gelfand-Fuks cohomology
-
ZB 634.57015, MR 89g:58228
-
[27] P.W. Michor, The cohomology of the diffeomorphism group is a Gelfand-Fuks cohomology, Suppl. Rendiconti del Circolo Matematico di Palermo, Serie II 14 (1987) 235-246, ZB 634.57015, MR 89g:58228.
-
(1987)
Suppl. Rendiconti del Circolo Matematico di Palermo, Serie II
, vol.14
, pp. 235-246
-
-
Michor, P.W.1
-
31
-
-
84968476159
-
Cohomology and deformations in graded Lie algebras
-
[30] A. Nijenhuis, R. Richardson, Cohomology and deformations in graded Lie algebras. Bull. AMS 72 (1966) 1-29.
-
(1966)
Bull. AMS
, vol.72
, pp. 1-29
-
-
Nijenhuis, A.1
Richardson, R.2
-
32
-
-
33645684162
-
What is a classical R-matrix
-
[31] M.A. Semenov-Tian-Shansky, What is a classical R-matrix, Funct. Anal. Appl. 17 (4) (1983) 17-33.
-
(1983)
Funct. Anal. Appl.
, vol.17
, Issue.4
, pp. 17-33
-
-
Semenov-Tian-Shansky, M.A.1
-
33
-
-
0000034691
-
Dressing transformations and Poisson Lie group actions
-
[32] M.A. Semenov-Tian-Shansky, Dressing transformations and Poisson Lie group actions, Publ. RIMS 21 (1985) 1237-1260.
-
(1985)
Publ. RIMS
, vol.21
, pp. 1237-1260
-
-
Semenov-Tian-Shansky, M.A.1
-
34
-
-
0000142517
-
Poisson-Lie groups, quantum duality principle, and the twisted quantum double
-
Russian
-
[33] M.A. Semenov-Tian-Shansky, Poisson-Lie groups, quantum duality principle, and the twisted quantum double, Theore. Math. Phys. 93 (1992) 302-329 (Russian).
-
(1992)
Theore. Math. Phys.
, vol.93
, pp. 302-329
-
-
Semenov-Tian-Shansky, M.A.1
-
35
-
-
0010185435
-
On the structure of groups which can be represented as the product of two subgroups
-
[34] J. Szép, On the structure of groups which can be represented as the product of two subgroups, Acta Sci. Math. Szeged 12 (1950) 57-61.
-
(1950)
Acta Sci. Math. Szeged
, vol.12
, pp. 57-61
-
-
Szép, J.1
-
38
-
-
34249968498
-
Fixed-point-free automorphisms of Lie algebras
-
[37] J. Zha, Fixed-point-free automorphisms of Lie algebras, Acta Math. Sin., New Ser. 5 (1) (1989) 95-96.
-
(1989)
Acta Math. Sin., New Ser.
, vol.5
, Issue.1
, pp. 95-96
-
-
Zha, J.1
|