메뉴 건너뛰기




Volumn 31, Issue 7, 1998, Pages 847-855

Pattern clustering based on noise modeling in wavelet space

Author keywords

trous wavelet transform; Cluster analysis; Minefield detection; Noise modeling; Point pattern; Poisson distribution

Indexed keywords

ALGORITHMS; DATA STRUCTURES; FEATURE EXTRACTION; IMAGE ANALYSIS; MATHEMATICAL MODELS; OBJECT RECOGNITION; POISSON DISTRIBUTION; WAVELET TRANSFORMS;

EID: 0032118451     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0031-3203(97)00115-5     Document Type: Article
Times cited : (13)

References (42)
  • 1
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing Gestalt clusters
    • C. T. Zahn, Graph-theoretical methods for detecting and describing Gestalt clusters, IEEE Trans. on Comput. C-20, 68-86 (1971).
    • (1971) IEEE Trans. on Comput. , vol.C-20 , pp. 68-86
    • Zahn, C.T.1
  • 2
    • 0018345492 scopus 로고
    • Single-link characteristics of a mode-seeking clustering algorithm
    • E. Shaffer, R. Dubes and A. K. Jain, Single-link characteristics of a mode-seeking clustering algorithm, Pattern Recognition 11, 65-70 (1979).
    • (1979) Pattern Recognition , vol.11 , pp. 65-70
    • Shaffer, E.1    Dubes, R.2    Jain, A.K.3
  • 3
    • 0020970262 scopus 로고
    • Some statistical properties of the minimum spanning forest
    • V. Di Gesù and B. Sacco, Some statistical properties of the minimum spanning forest, Pattern Recognition 16, 525-531 (1983).
    • (1983) Pattern Recognition , vol.16 , pp. 525-531
    • Di Gesù, V.1    Sacco, B.2
  • 4
    • 0022506563 scopus 로고
    • Remarks on some statistical properties of the minimum spanning forest
    • R. C. Dubes and R. L. Hoffman, Remarks on some statistical properties of the minimum spanning forest, Pattern Recognition 19, 49-53 (1986).
    • (1986) Pattern Recognition , vol.19 , pp. 49-53
    • Dubes, R.C.1    Hoffman, R.L.2
  • 7
    • 0001831117 scopus 로고
    • Mode analysis: A generalization of nearest neighbour which reduces chaining effects
    • A. J. Cole ed., Academic, New York
    • D. Wishart, Mode analysis: a generalization of nearest neighbour which reduces chaining effects (with discussion), in: Numerical Taxonomy, A. J. Cole ed., Academic, New York, 282-311 (1969).
    • (1969) Numerical Taxonomy , pp. 282-311
    • Wishart, D.1
  • 8
    • 0003818096 scopus 로고
    • Clustan Ltd., 16 Kingsburgh Road, Edinburgh EH12 6DZ, Scotland
    • D. Wishart, CLUSTAN User Manual, Clustan Ltd., 16 Kingsburgh Road, Edinburgh EH12 6DZ, Scotland (1987).
    • (1987) CLUSTAN User Manual
    • Wishart, D.1
  • 9
    • 0016994771 scopus 로고
    • A graph-theoretic approach to nonparametric cluster analysis
    • W. L. G. Koontz, P. M. Narendra and K. Fukunaga, A graph-theoretic approach to nonparametric cluster analysis, IEEE Trans. Comput. C-25, 936-944 (1976).
    • (1976) IEEE Trans. Comput. , vol.C-25 , pp. 936-944
    • Koontz, W.L.G.1    Narendra, P.M.2    Fukunaga, K.3
  • 11
    • 0025953123 scopus 로고
    • A cluster detection algorithm based on percolation theory
    • C. Gotsman, A cluster detection algorithm based on percolation theory, Pattern Recognition Letters 12, 199-202 (1991).
    • (1991) Pattern Recognition Letters , vol.12 , pp. 199-202
    • Gotsman, C.1
  • 12
    • 24444448454 scopus 로고
    • The generalized percolation for data analysis and pattern recognition
    • J. Janssen, J.-F. Marcotorchino and J.-M. Proth, eds., Elsevier, Amsterdam
    • R. Tremolières, The generalized percolation for data analysis and pattern recognition, in: New Trends in Data Analysis and Applications, J. Janssen, J.-F. Marcotorchino and J.-M. Proth, eds., Elsevier, Amsterdam, 125-145 (1983).
    • (1983) New Trends in Data Analysis and Applications , pp. 125-145
    • Tremolières, R.1
  • 17
    • 0022011002 scopus 로고
    • A survey of algorithms for contiguity-constrained clustering and related problems
    • F. Murtagh, A survey of algorithms for contiguity-constrained clustering and related problems, The Comput. J. 28, 82-88 (1985).
    • (1985) The Comput. J. , vol.28 , pp. 82-88
    • Murtagh, F.1
  • 18
    • 0347086429 scopus 로고
    • Function-point cluster analysis
    • J. O. Katz and F. J. Rohlf, Function-point cluster analysis, Systematic Zoology, 22, 295-301 (1973).
    • (1973) Systematic Zoology , vol.22 , pp. 295-301
    • Katz, J.O.1    Rohlf, F.J.2
  • 19
    • 0020972127 scopus 로고
    • An algorithm for pattern description on the level of relative proximity
    • M. P. van Oeffelen and P. G. Vos, An algorithm for pattern description on the level of relative proximity, Pattern Recognition 16, 341-348 (1983).
    • (1983) Pattern Recognition , vol.16 , pp. 341-348
    • Van Oeffelen, M.P.1    Vos, P.G.2
  • 20
    • 0027592254 scopus 로고
    • A new clustering algorithm applicable to multispectral and polarimetric SAR images
    • Y.-F. Wong and E. C. Posner, A new clustering algorithm applicable to multispectral and polarimetric SAR images, IEEE Trans. Geosci. Remote Sensing 31, 634-644 (1993).
    • (1993) IEEE Trans. Geosci. Remote Sensing , vol.31 , pp. 634-644
    • Wong, Y.-F.1    Posner, E.C.2
  • 21
    • 0002005341 scopus 로고
    • Cosmological N-body simulations
    • E. Bertschinger and J.M. Gelb, Cosmological N-body simulations, Comput. Phys 6, 164-179 (1991).
    • (1991) Comput. Phys , vol.6 , pp. 164-179
    • Bertschinger, E.1    Gelb, J.M.2
  • 22
    • 0029312091 scopus 로고
    • Using the Potts Glass for solving the clustering problem
    • M. Bengtsson and P. Roivainen, Using the Potts Glass for solving the clustering problem, Int. J. Neural Systems 6, 119-132 (1995).
    • (1995) Int. J. Neural Systems , vol.6 , pp. 119-132
    • Bengtsson, M.1    Roivainen, P.2
  • 23
    • 0024856047 scopus 로고
    • Cluster detection in background noise
    • J.-M. Jolion, and A. Rosenfeld, Cluster detection in background noise, Pattern Recognition 22, 603-607 (1989).
    • (1989) Pattern Recognition , vol.22 , pp. 603-607
    • Jolion, J.-M.1    Rosenfeld, A.2
  • 24
    • 2142725927 scopus 로고
    • Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tesselation
    • Technical Report 293, Department of Statistics, University of Washington
    • D. Allard, Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tesselation. Technical Report 293, Department of Statistics, University of Washington (1995). (Submitted to Journal of the American Statistical Association.)
    • (1995) Journal of the American Statistical Association
    • Allard, D.1
  • 25
    • 0025573210 scopus 로고
    • A new approach to clustering
    • R. Wilson and M. Spann, A new approach to clustering, Pattern Recognition 23, 1413-1425 (1990).
    • (1990) Pattern Recognition , vol.23 , pp. 1413-1425
    • Wilson, R.1    Spann, M.2
  • 26
    • 0021644144 scopus 로고
    • Fitting straight lines to point patterns
    • F. Murtagh and A.E. Raftery, Fitting straight lines to point patterns, Pattern Recognition 17, 479-483 (1984).
    • (1984) Pattern Recognition , vol.17 , pp. 479-483
    • Murtagh, F.1    Raftery, A.E.2
  • 27
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J. D. Banfield, and A. E. Raftery, Model-based Gaussian and non-Gaussian clustering, Biometrics 49, 803-821 (1993).
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 28
    • 12044255837 scopus 로고
    • Objective detection of voids and high density structures in the first CfA redshift survey slice
    • E. Slezak, V. de Lapparent and A. Bijaoui, Objective detection of voids and high density structures in the first CfA redshift survey slice, Astrophys. J. 409, 517-529 (1993).
    • (1993) Astrophys. J. , vol.409 , pp. 517-529
    • Slezak, E.1    De Lapparent, V.2    Bijaoui, A.3
  • 30
    • 0026938667 scopus 로고
    • The discrete wavelet transform: Wedding the à trous and Mallat algorithms
    • M. J. Shensa, The discrete wavelet transform: wedding the à trous and Mallat algorithms, IEEE Trans. Signal Processing 40, 2464-2482 (1992).
    • (1992) IEEE Trans. Signal Processing , vol.40 , pp. 2464-2482
    • Shensa, M.J.1
  • 31
    • 0019998772 scopus 로고
    • Wave propagation and sampling theory I and II
    • J. Morlet, G. Arens, E. Fourgeau, and D. Giard, Wave propagation and sampling theory I and II, Geophys. 47, 203-236 (1982).
    • (1982) Geophys. , vol.47 , pp. 203-236
    • Morlet, J.1    Arens, G.2    Fourgeau, E.3    Giard, D.4
  • 32
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans, on Pattern Anal. Mach. Intell. 11, 7 (1989).
    • (1989) IEEE Trans, on Pattern Anal. Mach. Intell. , vol.11 , pp. 7
    • Mallat, S.1
  • 33
    • 0000691283 scopus 로고
    • Image restoration with noise suppression using the wavelet transform
    • J. L. Starck and F. Murtagh, Image restoration with noise suppression using the wavelet transform, Astronomy and Astophysics 288, 342-348 (1994).
    • (1994) Astronomy and Astophysics , vol.288 , pp. 342-348
    • Starck, J.L.1    Murtagh, F.2
  • 36
    • 0000695667 scopus 로고
    • Identification of structures from galaxy counts: Use of the wavelet transform
    • E. Slezak, A. Bijaoui and G. Mars, Identification of structures from galaxy counts: use of the wavelet transform, Astronomy Astrophys. 227, 301-316 (1990).
    • (1990) Astronomy Astrophys. , vol.227 , pp. 301-316
    • Slezak, E.1    Bijaoui, A.2    Mars, G.3
  • 37
    • 0029502270 scopus 로고
    • Multiresolution support applied to image filtering and deconvolution
    • J. L. Starck, A. Bijaoui and F. Murtagh, Multiresolution support applied to image filtering and deconvolution, Graphical Models Image Processing 57, 420-431 (1995).
    • (1995) Graphical Models Image Processing , vol.57 , pp. 420-431
    • Starck, J.L.1    Bijaoui, A.2    Murtagh, F.3
  • 38
    • 0042547689 scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Department of Statistics, University of Washington
    • A. Dasgupta and A. E. Raftery, Detecting features in spatial point processes with clutter via model-based clustering. Technical Report 295, Department of Statistics, University of Washington (1995). Available at http: //www.stat.washington.edu/tech.reports/.
    • (1995) Technical Report , vol.295
    • Dasgupta, A.1    Raftery, A.E.2
  • 39
    • 0025665856 scopus 로고
    • A heuristic method for separating clusters from noisy background
    • J. S. Huang and W. R. Shieh, A heuristic method for separating clusters from noisy background, Pattern Recognition 23, 147-157 (1990).
    • (1990) Pattern Recognition , vol.23 , pp. 147-157
    • Huang, J.S.1    Shieh, W.R.2
  • 41
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • G. Celeux and G. Govaert, Gaussian parsimonious clustering models, Pattern Recognition, 28, 781-793 (1995).
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 42
    • 0001850271 scopus 로고    scopus 로고
    • Nearest neighbor clutter removal for estimating features in spatial point processes
    • Department of Statistics, University of Washington
    • S. Byers and A. E. Raftery, Nearest neighbor clutter removal for estimating features in spatial point processes. Technical Report 305, Department of Statistics, University of Washington (1996). Available at http://www. stat.washington.edu/tech.reports/.
    • (1996) Technical Report , vol.305
    • Byers, S.1    Raftery, A.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.