메뉴 건너뛰기




Volumn 335, Issue 5, 1998, Pages 929-950

Hierarchically Structured Neural Networks: A way to shape a 'magma' of neurons

Author keywords

Control systems; Hierarchical structure; Neural network; System modelling

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; BACKPROPAGATION; CONTROL SYSTEM ANALYSIS; CONTROL SYSTEM SYNTHESIS; HIERARCHICAL SYSTEMS; NONLINEAR CONTROL SYSTEMS; SET THEORY;

EID: 0032115230     PISSN: 00160032     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0016-0032(97)00024-0     Document Type: Article
Times cited : (6)

References (22)
  • 2
    • 0027659357 scopus 로고
    • Curvature-driven smoothing: A learning algorithm for feedforward networks
    • C. M. Bishop, Curvature-driven smoothing: a learning algorithm for feedforward networks. IEEE Trans. Neural Networks, Vol. 4(5), pp. 882-884, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 882-884
    • Bishop, C.M.1
  • 3
    • 0003544877 scopus 로고    scopus 로고
    • Identification, adaptation, learning - The science of learning models from data
    • Springer-Verlag, Berlin
    • S. Bittanti and G. Picci (Editors), "Identification, Adaptation, Learning - The Science of Learning Models from Data", Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1996.
    • (1996) Lecture Notes in Computer Science
    • Bittanti, S.1    Picci, G.2
  • 4
    • 0000773866 scopus 로고    scopus 로고
    • Direct quasi-linearization of a nonlinear plant: The case of a synchronous generator working in underexcitation condition
    • San Francisco, CA
    • S. Bittanti, C. Brasca, S. Corsi, G. Guardabassi, M. Pozzi and S. Savaresi, "Direct Quasi-Linearization of a Nonlinear Plant: the case of a Synchronous Generator Working in Underexcitation Condition", Proceedings of 13th IFAC World Congress, San Francisco, CA, Vol. 7d, pp. 175-180, 1996.
    • (1996) Proceedings of 13th IFAC World Congress , vol.7 D , pp. 175-180
    • Bittanti, S.1    Brasca, C.2    Corsi, S.3    Guardabassi, G.4    Pozzi, M.5    Savaresi, S.6
  • 5
  • 8
    • 0027875999 scopus 로고
    • Artificial neural network identification of partially known dynamic nonlinear systems
    • San Antonio, TX
    • R. H. Brown, T. L. Ruchti and X. Feng, "Artificial Neural Network Identification of Partially Known Dynamic Nonlinear Systems", in Proceedings of the 32nd Conference on Decision and Control, San Antonio, TX, pp. 3694-3699, 1993.
    • (1993) Proceedings of the 32nd Conference on Decision and Control , pp. 3694-3699
    • Brown, R.H.1    Ruchti, T.L.2    Feng, X.3
  • 9
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenko, Approximation by superposition of a sigmoidal function. Mathemat. Control Signals Syst., 1989, 2, 303-314.
    • (1989) Mathemat. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 11
    • 0028465208 scopus 로고
    • Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems
    • S. Elanayar and Y. C. Shin, Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans. Neural Networks, Vol. 5(4), pp. 594-603, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 594-603
    • Elanayar, S.1    Shin, Y.C.2
  • 13
    • 0026382928 scopus 로고
    • Encoding a-priori information in feedforward networks
    • W. H. Joerding and J. L. Meador, Encoding a-priori information in feedforward networks. Neural Networks, 1991, 4, 847-856.
    • (1991) Neural Networks , vol.4 , pp. 847-856
    • Joerding, W.H.1    Meador, J.L.2
  • 15
    • 0023084681 scopus 로고
    • A hierarchical neural-network model for control and learning of voluntary movement
    • M. Kawato, K. Furukawa and R. Suzuki, A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybernet., 1987, 57, 169-185.
    • (1987) Biol. Cybernet. , vol.57 , pp. 169-185
    • Kawato, M.1    Furukawa, K.2    Suzuki, R.3
  • 19
    • 0028425062 scopus 로고
    • Neural networks for feedback feedforward nonlinear control systems
    • T. Parisini and R. Zoppoli, Neural networks for feedback feedforward nonlinear control systems. IEEE Trans. Neural Networks, Vol. 5(3), pp. 436-449, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.3 , pp. 436-449
    • Parisini, T.1    Zoppoli, R.2
  • 20


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.