메뉴 건너뛰기




Volumn 11, Issue 4, 1998, Pages 699-707

Neural computations of algebraic and geometrical structures

Author keywords

Model based neural networks; Neural computation

Indexed keywords

ALGEBRA; COMPUTER ARCHITECTURE; COMPUTER SIMULATION; DATA STRUCTURES; GEOMETRY; MATHEMATICAL MODELS; PROBLEM SOLVING;

EID: 0032098387     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(97)00152-4     Document Type: Article
Times cited : (2)

References (12)
  • 1
    • 0001092437 scopus 로고
    • The numerical solution of polynomial equations and the resultant procedures
    • In A. Ralston & W.S. Herbert (Eds.), New York: John Wiley
    • Bareiss, E.H. (1967). The numerical solution of polynomial equations and the resultant procedures. In A. Ralston & W.S. Herbert (Eds.), Mathematical Methods for Digital Computer, Vol. II, pp. 185-214. New York: John Wiley.
    • (1967) Mathematical Methods for Digital Computer , vol.2 , pp. 185-214
    • Bareiss, E.H.1
  • 10
    • 0010255764 scopus 로고    scopus 로고
    • Shift, rotation and scale invariant signatures for two dimensional contours in a neural network architecture
    • International Conference on the Mathematics of Neural Networks. In S. Elliot, S. Mason, & I. Anderson (Eds.), Boston: Kluwer, Academic Press
    • Squire, D., & Caelli, T. (1997). Shift, rotation and scale invariant signatures for two dimensional contours in a neural network architecture. International Conference on the Mathematics of Neural Networks. In S. Elliot, S. Mason, & I. Anderson (Eds.), Mathematics of Neural Networks, pp. 344-348. Boston: Kluwer, Academic Press.
    • (1997) Mathematics of Neural Networks , pp. 344-348
    • Squire, D.1    Caelli, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.