-
1
-
-
0018066425
-
Infrared and Submillimeter Antennas
-
D.B. Rutledge, S.E. Schwarz, and A.T. Adams, "Infrared and Submillimeter Antennas," Infrared Phys. 18, 713-729 (1978).
-
(1978)
Infrared Phys.
, vol.18
, pp. 713-729
-
-
Rutledge, D.B.1
Schwarz, S.E.2
Adams, A.T.3
-
2
-
-
0010540251
-
AC Electron Tunneling at Infrared Frequencies: Thin-film M-O-M Diode Structure with Broadband Characteristics
-
J.G. Small, G.M. Elchinger, A. Javan et al., "AC Electron Tunneling at Infrared Frequencies: Thin-film M-O-M Diode Structure with Broadband Characteristics," Appl. Phys. Lett. 24 (6), 275-279 (1974).
-
(1974)
Appl. Phys. Lett.
, vol.24
, Issue.6
, pp. 275-279
-
-
Small, J.G.1
Elchinger, G.M.2
Javan, A.3
-
3
-
-
0347414745
-
Coupling Characteristics of Thin-film Metal-Oxide-Metal Diodes at 10.6 μm
-
S. Y. Wang, T. Izawa, and T.K. Gustafson, "Coupling Characteristics of Thin-film Metal-Oxide-Metal Diodes at 10.6 μm," Appl. Phys. Lett. 27 (9), 481-483 (1975).
-
(1975)
Appl. Phys. Lett.
, vol.27
, Issue.9
, pp. 481-483
-
-
Wang, S.Y.1
Izawa, T.2
Gustafson, T.K.3
-
4
-
-
0022079904
-
Dipole and Slot Elements and Arrays on Semi-Infinite Substrate
-
M. Kominami, Pozar, D.M., Schaubert, D.H., "Dipole and Slot Elements and Arrays on Semi-Infinite Substrate," IEEE Trans. on Ant. and Prop. 33 (6), 600-607 (1985).
-
(1985)
IEEE Trans. on Ant. and Prop.
, vol.33
, Issue.6
, pp. 600-607
-
-
Kominami, M.1
Pozar, D.M.2
Schaubert, D.H.3
-
5
-
-
0001406606
-
Lithographic Spiral Antennas at Short Wavelengths
-
N.
-
E. Grossman, N., J. E. Sauvageau, and D. G. McDonald, "Lithographic Spiral Antennas at Short Wavelengths," Appl. Phys. Lett. 59 (25), 3225-3227 (1991).
-
(1991)
Appl. Phys. Lett.
, vol.59
, Issue.25
, pp. 3225-3227
-
-
Grossman, E.1
Sauvageau, J.E.2
McDonald, D.G.3
-
6
-
-
0031234730
-
Antenna-coupled Polysilicon Air-bridge Thermal Detector for Mid-infrared Radiation
-
N. Chong and H. Ahmed, "Antenna-coupled Polysilicon Air-bridge Thermal Detector for Mid-infrared Radiation," Appl. Phys. Lett. 71 (12), 1607-1609 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.71
, Issue.12
, pp. 1607-1609
-
-
Chong, N.1
Ahmed, H.2
-
7
-
-
0028380755
-
Integrated Nanostrip Dipole Antennas for Coherent 30 THz Infrared Radiation
-
I. Wilke, W. Herrmann, and F.K. Kneubuhl, "Integrated Nanostrip Dipole Antennas for Coherent 30 THz Infrared Radiation," Appl. Phys. B B58, 87-94 (1994).
-
(1994)
Appl. Phys. B
, vol.B58
, pp. 87-94
-
-
Wilke, I.1
Herrmann, W.2
Kneubuhl, F.K.3
-
8
-
-
0029289244
-
Niobium Microbolometers for Far-infrared Detection
-
M. E. MacDonald, Grossman, E. N., "Niobium Microbolometers for Far-infrared Detection," IEEE Trans. on Microwave Theory and Techniques 43 (4), 893-896 (1995).
-
(1995)
IEEE Trans. on Microwave Theory and Techniques
, vol.43
, Issue.4
, pp. 893-896
-
-
MacDonald, M.E.1
Grossman, E.N.2
-
9
-
-
0028407501
-
Nanometer Thin-Film Ni-NiO-Ni Diodes for 30 THz Radiation
-
I. Wilke, Opplinger, Y., Hermann, W., Kneubuhl, F.K., "Nanometer Thin-Film Ni-NiO-Ni Diodes for 30 THz Radiation," Appl. Phys. A. A58, 329-341 (1994).
-
(1994)
Appl. Phys. A.
, vol.A58
, pp. 329-341
-
-
Wilke, I.1
Opplinger, Y.2
Hermann, W.3
Kneubuhl, F.K.4
-
10
-
-
2342466664
-
-
Ph. D., Inst. Quantum Electronics, ETH, Much higher cross-polarization has been reported in microwave, difference frequency mixing signals
-
2-laser Emissions with Difference Frequencies up to 176 GHz", Appl. Phys. B, 66, 1-6 (1998)). However, this presumably reflects the slower time constant of the cross-polarized signal, which is thermal in origin, rather than the intrinsic polarization of the antenna/substrate system.
-
(1997)
Nanometer Thin-Film Ni-NiO-Ni Diodes for Detection and Mixing of 30 THz Radiation
-
-
Fumeaux, C.1
-
11
-
-
0032027569
-
2-laser Emissions with Difference Frequencies up to 176 GHz
-
However, this presumably reflects the slower time constant of the cross-polarized signal, which is thermal in origin, rather than the intrinsic polarization of the antenna/substrate system
-
2-laser Emissions with Difference Frequencies up to 176 GHz", Appl. Phys. B, 66, 1-6 (1998)). However, this presumably reflects the slower time constant of the cross-polarized signal, which is thermal in origin, rather than the intrinsic polarization of the antenna/substrate system.
-
(1998)
Appl. Phys. B
, vol.66
, pp. 1-6
-
-
Fumeaux, C.1
Hermann, W.2
Kneubuhl, F.K.3
Rothuizen, H.4
Lipphardt, B.5
Weiss, C.O.6
-
12
-
-
84907878634
-
Millimeter-Wave and Terahertz Integrated-Circuit Antennas
-
G. M. Rebeiz, "Millimeter-Wave and Terahertz Integrated-Circuit Antennas," Proc. of the IEEE 80 (11), 1748-1760 (1992).
-
(1992)
Proc. of the IEEE
, vol.80
, Issue.11
, pp. 1748-1760
-
-
Rebeiz, G.M.1
-
13
-
-
0019622911
-
Planar Antennas on a Dielectric Surface
-
C.R. Brewitt-Taylor, D.J. Gunton, and H.D. Rees, "Planar Antennas on a Dielectric Surface," Electronics Lett. 17 (20), 729-731 (1981).
-
(1981)
Electronics Lett.
, vol.17
, Issue.20
, pp. 729-731
-
-
Brewitt-Taylor, C.R.1
Gunton, D.J.2
Rees, H.D.3
|