-
1
-
-
84872639295
-
Significance tests for 2 × 2 tables
-
Barnard, G.A., 1947. Significance tests for 2 × 2 tables. Biometrika 34, 123-138.
-
(1947)
Biometrika
, vol.34
, pp. 123-138
-
-
Barnard, G.A.1
-
2
-
-
0000665597
-
Testing for association in 2 × 2 contingency tables with very small samples sizes
-
Camilli, G., Hopkins, K.D., 1979. Testing for association in 2 × 2 contingency tables with very small samples sizes. Psychol. Bull. 86 (5), 1011-1014.
-
(1979)
Psychol. Bull.
, vol.86
, Issue.5
, pp. 1011-1014
-
-
Camilli, G.1
Hopkins, K.D.2
-
3
-
-
0002618209
-
Exact tests for 2 × 2 contingency tables
-
Davis, L.J., 1986. Exact tests for 2 × 2 contingency tables. Amer. Statist. 40 (2), 139-141.
-
(1986)
Amer. Statist.
, vol.40
, Issue.2
, pp. 139-141
-
-
Davis, L.J.1
-
4
-
-
0002033443
-
The logic of inductive inference
-
Fisher, R.A., 1935. The logic of inductive inference. J. Roy. Statist. Soc. Ser. A 98, 39-54.
-
(1935)
J. Roy. Statist. Soc. Ser. A
, vol.98
, pp. 39-54
-
-
Fisher, R.A.1
-
6
-
-
84981980538
-
A modified exact test for 2 × 2 contingency tables
-
Haber, M., 1986. A modified exact test for 2 × 2 contingency tables. Biometrical J. 28 (4), 455-463.
-
(1986)
Biometrical J.
, vol.28
, Issue.4
, pp. 455-463
-
-
Haber, M.1
-
7
-
-
0001490014
-
A comparison of some conditional and unconditional exact tests for 2 × 2 contingency tables
-
Haber, M., 1987. A comparison of some conditional and unconditional exact tests for 2 × 2 contingency tables. Comm. Statist. Simulation 16 (4), 999-1013.
-
(1987)
Comm. Statist. Simulation
, vol.16
, Issue.4
, pp. 999-1013
-
-
Haber, M.1
-
8
-
-
0010118611
-
Testing independence in 2 × 2 contingency tables
-
Kroll, N.E.A., 1989. Testing independence in 2 × 2 contingency tables. J. Ed. Statist. 14 (1), 47-79.
-
(1989)
J. Ed. Statist.
, vol.14
, Issue.1
, pp. 47-79
-
-
Kroll, N.E.A.1
-
9
-
-
85048902416
-
Statistical control of counting experiment
-
Lancaster, H.O., 1952. Statistical control of counting experiment. Biometrika 39, 419-422.
-
(1952)
Biometrika
, vol.39
, pp. 419-422
-
-
Lancaster, H.O.1
-
11
-
-
0000065783
-
A review of classic non-asymptotic methods for comparing two proportions by means of independent samples
-
Martin, A.A., 1991. A review of classic non-asymptotic methods for comparing two proportions by means of independent samples. Comm. Statist. Simulation Comput 20 (2 and 3), 551-583.
-
(1991)
Comm. Statist. Simulation Comput
, vol.20
, Issue.2-3
, pp. 551-583
-
-
Martin, A.A.1
-
12
-
-
38149147384
-
Choosing the optimal unconditioned test for comparing two independent proportions
-
Martin, A.A. Silva, M.A., 1994. Choosing the optimal unconditioned test for comparing two independent proportions. Comput. Statist. Data Anal. 17, 555-574.
-
(1994)
Comput. Statist. Data Anal.
, vol.17
, pp. 555-574
-
-
Martin, A.A.1
Silva, M.A.2
-
13
-
-
0000800267
-
A non-randomized unconditional test for comparing two proportions in a 2 × 2 contingency table
-
McDonald, L.L., Davis, B.M., Milliken, G.A., 1977. A non-randomized unconditional test for comparing two proportions in a 2 × 2 contingency table. Technometrics 19, 145-150.
-
(1977)
Technometrics
, vol.19
, pp. 145-150
-
-
McDonald, L.L.1
Davis, B.M.2
Milliken, G.A.3
-
14
-
-
0010070981
-
Some revised continuity corrections for discrete distributions
-
Pirie, W.R., Hamdan, M.A., 1972. Some revised continuity corrections for discrete distributions. Biometrics 28, 693-701.
-
(1972)
Biometrics
, vol.28
, pp. 693-701
-
-
Pirie, W.R.1
Hamdan, M.A.2
-
15
-
-
0028934386
-
On analysis of epidemiological data involving a 2 × 2 contingency table: An overview of fisher's exact test and Yates' correction for continuity
-
Sahai, H., Khurshid, A., 1995. On analysis of epidemiological data involving a 2 × 2 contingency table: an overview of Fisher's exact test and Yates' correction for continuity. J. Biopharm. Statist. 5 (1), 43-70.
-
(1995)
J. Biopharm. Statist.
, vol.5
, Issue.1
, pp. 43-70
-
-
Sahai, H.1
Khurshid, A.2
-
16
-
-
0026535131
-
Exact unconditional tables for significance testing in the 2 × 2 multinomial trial
-
Correction in 11, 1619
-
Shuster, J.J., 1992. Exact unconditional tables for significance testing in the 2 × 2 multinomial trial. Statist. Med. 11 (7), 913-922. Correction in 11, 1619.
-
(1992)
Statist. Med.
, vol.11
, Issue.7
, pp. 913-922
-
-
Shuster, J.J.1
-
17
-
-
0000356023
-
Simplifying the calculation of the P-value for Barnard's test and its derivatives
-
Silva, M.A., Martin, A.A., 1997. Simplifying the calculation of the P-value for Barnard's test and its derivatives. Statist. Comput. 7, 137-143.
-
(1997)
Statist. Comput.
, vol.7
, pp. 137-143
-
-
Silva, M.A.1
Martin, A.A.2
-
18
-
-
0000419888
-
Exact unconditional samples sizes for the 2 × 2 binomial trial
-
Suissa, S., Shuster, J.J., 1985. Exact unconditional samples sizes for the 2 × 2 binomial trial. J. Roy. Statist. Soc. Ser. A 148 (4), 317-327.
-
(1985)
J. Roy. Statist. Soc. Ser. A
, vol.148
, Issue.4
, pp. 317-327
-
-
Suissa, S.1
Shuster, J.J.2
-
19
-
-
0001570835
-
Test of significance for 2 × 2 contingency tables
-
Yates, F., 1984. Test of significance for 2 × 2 contingency tables. J. Roy. Statist. Soc. Ser. A 147 (3), 426-463.
-
(1984)
J. Roy. Statist. Soc. Ser. A
, vol.147
, Issue.3
, pp. 426-463
-
-
Yates, F.1
|