메뉴 건너뛰기




Volumn 60, Issue 3, 1998, Pages 435-448

The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model

Author keywords

[No Author keywords available]

Indexed keywords

COMPETITION; MATHEMATICAL ANALYSIS; POPULATION DYNAMICS; POPULATION MODEL; REVIEW; SPECIES DIFFERENTIATION;

EID: 0032079056     PISSN: 00928240     EISSN: None     Source Type: Journal    
DOI: 10.1006/bulm.1997.0008     Document Type: Article
Times cited : (148)

References (17)
  • 1
    • 0002488752 scopus 로고
    • Nonlinear diffusion in population genetics, combustion and nerve propagation
    • Aronson, D. G. (1975). Nonlinear diffusion in population genetics, combustion and nerve propagation. Lect. Notes Math. 446, 5-49.
    • (1975) Lect. Notes Math. , vol.446 , pp. 5-49
    • Aronson, D.G.1
  • 2
    • 49349119963 scopus 로고
    • Multidimensional nonlinear diffusion arising in population genetics
    • Aronson, D. G. and H. F. Weinberger (1978). Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33-76.
    • (1978) Adv. Math. , vol.30 , pp. 33-76
    • Aronson, D.G.1    Weinberger, H.F.2
  • 4
    • 0003175686 scopus 로고
    • The convergence of solutions of the Kolmogorov nonlinear diffusion equation to traveling waves
    • Bramson, M. (1983). The convergence of solutions of the Kolmogorov nonlinear diffusion equation to traveling waves. Mem. Amer. Math. Soc. 44.
    • (1983) Mem. Amer. Math. Soc. , vol.44
    • Bramson, M.1
  • 5
    • 0000268135 scopus 로고
    • The wave of advance of advantageous genes
    • Fisher, R. (1937). The wave of advance of advantageous genes. Ann. of Eugenics 7, 335-369.
    • (1937) Ann. of Eugenics , vol.7 , pp. 335-369
    • Fisher, R.1
  • 6
    • 0016743943 scopus 로고
    • Traveling fronts in nonlinear diffusion equations
    • Hadeler, K. P. and F. Rothe (1975). Traveling fronts in nonlinear diffusion equations. J. Math. Biology 2, 251-263.
    • (1975) J. Math. Biology , vol.2 , pp. 251-263
    • Hadeler, K.P.1    Rothe, F.2
  • 7
    • 0041335177 scopus 로고
    • Singular perturbation analysis of traveling waves for diffusive Lotka-Volterra competing models
    • Hosono, Y. (1989). Singular perturbation analysis of traveling waves for diffusive Lotka-Volterra competing models. Num. Appl. Math. 2, 687-692.
    • (1989) Num. Appl. Math. , vol.2 , pp. 687-692
    • Hosono, Y.1
  • 8
    • 0000387979 scopus 로고
    • Traveling waves for diffusive Lotka-Volterra competition models II: A geometric approach
    • Hosono, Y. (1995). Traveling waves for diffusive Lotka-Volterra competition models II: a geometric approach. Forma. 10, 235-257.
    • (1995) Forma. , vol.10 , pp. 235-257
    • Hosono, Y.1
  • 9
    • 0030242036 scopus 로고    scopus 로고
    • Existence of wave front solutions and estimates of wave speed for a competition-diffusion system
    • Kanel J. I. and L. Zhou (1996). Existence of wave front solutions and estimates of wave speed for a competition-diffusion system. Nonlin. Anal. TMA 27, 579-587.
    • (1996) Nonlin. Anal. TMA , vol.27 , pp. 579-587
    • Kanel, J.I.1    Zhou, L.2
  • 10
    • 0030737408 scopus 로고    scopus 로고
    • Fisher wave fronts for the Lotka-Volterra competition model with diffusion
    • Kan-on, Y. (1997). Fisher wave fronts for the Lotka-Volterra competition model with diffusion. Nonlin. Anal. TMA 28, 145-164.
    • (1997) Nonlin. Anal. TMA , vol.28 , pp. 145-164
    • Kan-on, Y.1
  • 11
    • 0002722044 scopus 로고
    • Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique
    • Kolmogorov, A. N., I. Petrovsky and N. Piscounoff. (1937). Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Moskow, Ser. Int. A1, 1-25.
    • (1937) Bull. Univ. Moskow, Ser. Int. , vol.A1 , pp. 1-25
    • Kolmogorov, A.N.1    Petrovsky, I.2    Piscounoff, N.3
  • 14
    • 0017172820 scopus 로고
    • On two types of moving front in quasilinear diffusion
    • Stokes, A. N. (1976). On two types of moving front in quasilinear diffusion. Math. Biosci. 31, 307-315.
    • (1976) Math. Biosci. , vol.31 , pp. 307-315
    • Stokes, A.N.1
  • 15
    • 0010436777 scopus 로고
    • Nonlinear diffusion waveshapes generated by possibly finite initial disturbances
    • Stokes, A. N. (1977). Nonlinear diffusion waveshapes generated by possibly finite initial disturbances. J. Math. Anal. Appl. 61, 370-381.
    • (1977) J. Math. Anal. Appl. , vol.61 , pp. 370-381
    • Stokes, A.N.1
  • 16
    • 0003147834 scopus 로고
    • Propagating fronts for competing species equations with diffusion
    • Tang M. M. and P. C. Fife (1980). Propagating fronts for competing species equations with diffusion. Arch. Rat. Mech. Anal. 73, 69-77.
    • (1980) Arch. Rat. Mech. Anal. , vol.73 , pp. 69-77
    • Tang, M.M.1    Fife, P.C.2
  • 17
    • 0000027176 scopus 로고
    • The behavior of solutions of some non-linear diffusion equations for large time
    • Uchiyama, K. (1978). The behavior of solutions of some non-linear diffusion equations for large time. J. Math. Kyoto Univ. 18, 453-508.
    • (1978) J. Math. Kyoto Univ. , vol.18 , pp. 453-508
    • Uchiyama, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.