-
2
-
-
0003523241
-
-
Expert Report U.S. Geological Survey, Washington, DC
-
H. Lee, The Distribution and Character of Contaminated Effluent-Affected Sediment, Palos Verdes Margin, Southern California, Expert Report (U.S. Geological Survey, Washington, DC, 1994).
-
(1994)
The Distribution and Character of Contaminated Effluent-Affected Sediment, Palos Verdes Margin, Southern California
-
-
Lee, H.1
-
3
-
-
0029657455
-
-
A. W. Niedoroda, D. J. P. Swift, C. W. Reed, J. K. Stull, Sci. Total Environ. 179, 109 (1996).
-
(1996)
Sci. Total Environ.
, vol.179
, pp. 109
-
-
Niedoroda, A.W.1
Swift, D.J.P.2
Reed, C.W.3
Stull, J.K.4
-
4
-
-
0003778198
-
-
EPA/600/2-86/ 090, U.S. Environmental Protection Agency, Washington, DC
-
DDE is generally considered more refractory than DDD and is shown as a terminal product in most biodegradation schemes in the literature [M. L. Rochkind and J. W. Blackburn, in Microbial Decomposition of Chlorinated Compounds (EPA/600/2-86/ 090, U.S. Environmental Protection Agency, Washington, DC, 1986), pp. 138-145]. Degradation of DDD tends to be slow, especially in aerobic soils, but its anaerobic degradation through DDMU [1-chloro-2,2-bis(p-chlorophenyl)ethylene] to DBP (p,p′-dichlorobenzophenone) has been established for certain microbial cultures [G. Wedemeyer, Appl. Microbiol. 15, 569 (1967)].
-
(1986)
Microbial Decomposition of Chlorinated Compounds
, pp. 138-145
-
-
Rochkind, M.L.1
Blackburn, J.W.2
-
5
-
-
0014085265
-
-
DDE is generally considered more refractory than DDD and is shown as a terminal product in most biodegradation schemes in the literature [M. L. Rochkind and J. W. Blackburn, in Microbial Decomposition of Chlorinated Compounds (EPA/600/2-86/ 090, U.S. Environmental Protection Agency, Washington, DC, 1986), pp. 138-145]. Degradation of DDD tends to be slow, especially in aerobic soils, but its anaerobic degradation through DDMU [1-chloro-2,2-bis(p-chlorophenyl)ethylene] to DBP (p,p′-dichlorobenzophenone) has been established for certain microbial cultures [G. Wedemeyer, Appl. Microbiol. 15, 569 (1967)].
-
(1967)
Appl. Microbiol.
, vol.15
, pp. 569
-
-
Wedemeyer, G.1
-
6
-
-
2642609423
-
-
report submitted to Palos Verdes Shelf Technical Advisory Committee, U.S. Environmental Protection Agency
-
E. J. List, R. G. Dean, P. H. Santschi, Erosion of the Palos Verdes Sediments, report submitted to Palos Verdes Shelf Technical Advisory Committee, U.S. Environmental Protection Agency (1997).
-
(1997)
Erosion of the Palos Verdes Sediments
-
-
List, E.J.1
Dean, R.G.2
Santschi, P.H.3
-
7
-
-
0023398853
-
-
The dechlorination of DDE to DDMU is analogous to the well-known microbial dechlorination of chlorinated ethenes [T. M. Vogel, C. S. Criddle, P. L. McCarty, Environ. Sci. Technol. 21, 722 (1987)]. Also, the dechlorination of DDE to DDMU by zero-valent iron at environmentally relevant temperatures has been reported [G. D. Sayles, G. You, M. Wang, M. J. Kupferle, ibid. 31, 3448 (1997)].
-
(1987)
Environ. Sci. Technol.
, vol.21
, pp. 722
-
-
Vogel, T.M.1
Criddle, C.S.2
McCarty, P.L.3
-
8
-
-
0031457839
-
-
The dechlorination of DDE to DDMU is analogous to the well-known microbial dechlorination of chlorinated ethenes [T. M. Vogel, C. S. Criddle, P. L. McCarty, Environ. Sci. Technol. 21, 722 (1987)]. Also, the dechlorination of DDE to DDMU by zero-valent iron at environmentally relevant temperatures has been reported [G. D. Sayles, G. You, M. Wang, M. J. Kupferle, ibid. 31, 3448 (1997)].
-
(1997)
Environ. Sci. Technol.
, vol.31
, pp. 3448
-
-
Sayles, G.D.1
You, G.2
Wang, M.3
Kupferle, M.J.4
-
9
-
-
0344185007
-
-
report submitted to Palos Verdes Technical Advisory Committee, U.S. Environmental Protection Agency
-
E. J. List, Biodegradation of DDT/DDE in Palos Verdes Sediments, report submitted to Palos Verdes Technical Advisory Committee, U.S. Environmental Protection Agency (1997).
-
(1997)
Biodegradation of DDT/DDE in Palos Verdes Sediments
-
-
List, E.J.1
-
10
-
-
0023823389
-
-
J. F. Quensen III, J. M. Tiedje, S. A.Boyd, Science 242, 752 (1988); J. F. Quensen III, S. A. Boyd, J. M. Tiedje, Appl. Environ. Microbiol. 56, 2368 (1990).
-
(1988)
Science
, vol.242
, pp. 752
-
-
Quensen III, J.F.1
Tiedje, J.M.2
Boyd, S.A.3
-
11
-
-
0023823389
-
-
J. F. Quensen III, J. M. Tiedje, S. A.Boyd, Science 242, 752 (1988); J. F. Quensen III, S. A. Boyd, J. M. Tiedje, Appl. Environ. Microbiol. 56, 2368 (1990).
-
(1990)
Appl. Environ. Microbiol.
, vol.56
, pp. 2368
-
-
Quensen III, J.F.1
Boyd, S.A.2
Tiedje, J.M.3
-
12
-
-
0000997071
-
-
2 (80:20, v:v) during experiment set-up by a Hungate gassing apparatus [R. E. Hungate, Adv. Microbiol. 3B, 117 (1968)].
-
(1968)
Adv. Microbiol.
, vol.3 B
, pp. 117
-
-
Hungate, R.E.1
-
14
-
-
84920311233
-
-
note
-
14C activity in the scrapings was determined by liquid scintillation counting.
-
-
-
-
15
-
-
84920311232
-
-
note
-
Chromatographic conditions: 30 m DB-5 capillary column with 0.32 mm inner diameter and 0.25 μm film thickness; inlet temperature of 220°C; column temperature program of 120°C for 1 min, 30°C per minute to 180°C, 10°C per minute to 290°C, and hold for 10 min. Mass spectra were obtained by electron impact ionization.
-
-
-
-
16
-
-
84920311231
-
-
note
-
Sulfate concentrations in aqueous samples were determined with a Waters Quanta 4000 Capillary Electrophoresis System equipped with a 60-cm Supelco CElect-F575 CE column (outer diameter 363 μm, inner diameter 75 μm) and ultraviolet detection at 254 nm. The retention time of sulfate was 4.8 min with Waters IonSelect Mobility Anion electrolyte and a run voltage of 12.5 kV. Samples were diluted 1:25 and filtered through a 0.45-μm filter before analysis.
-
-
-
-
17
-
-
84920311230
-
-
note
-
Supported by Montrose Chemical Corporation of California, Rhone-Poulenc, and Chris-Craft Industries. Mass spectral data were obtained at the Michigan State University Mass Spectrometry Facility, which is supported in part by a grant (DRR-00480) from the Biotechnology Research Technology Program, National Center for Research Resources, National Institutes of Health.
-
-
-
|