-
1
-
-
84856043672
-
A mathematical theory of communication
-
C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J., vol. 27, pp. 379-423, pp. 623-656, 1948.
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
3
-
-
84968466834
-
Positive functions on C*-algebras
-
W. F. Stinespring, "Positive functions on C*-algebras," in Proc. Amer. Math. Soc., vol. 6, pp. 211-216, 1955.
-
(1955)
Proc. Amer. Math. Soc.
, vol.6
, pp. 211-216
-
-
Stinespring, W.F.1
-
4
-
-
0020824728
-
On compound state and mutual information in quantum information theory
-
M. Ohya, "On compound state and mutual information in quantum information theory," IEEE Trans. Inform. Theory, vol. IT-29, pp. 770-774, 1983.
-
(1983)
IEEE Trans. Inform. Theory
, vol.IT-29
, pp. 770-774
-
-
Ohya, M.1
-
5
-
-
0018527510
-
Capacity of a quantum communication channel
-
A. S. Holevo, "Capacity of a quantum communication channel," Probl. Pered. Inform., vol. 15, pp. 3-11, 1979;
-
(1979)
Probl. Pered. Inform.
, vol.15
, pp. 3-11
-
-
Holevo, A.S.1
-
6
-
-
0018527510
-
-
translation in Probl. Inform. Transm., vol. 15, pp. 247-253, 1979.
-
(1979)
Probl. Inform. Transm.
, vol.15
, pp. 247-253
-
-
-
7
-
-
0002863425
-
Bounds for the quantity of information transmitted by a quantum communication channel
-
_, "Bounds for the quantity of information transmitted by a quantum communication channel," Probl. Pered. Inform., vol. 9, pp. 3-11, 1973;
-
(1973)
Probl. Pered. Inform.
, vol.9
, pp. 3-11
-
-
-
8
-
-
0002863426
-
-
translation in Probl. Inform. Transm., vol. 9, pp. 177-183, 1973.
-
(1973)
Probl. Inform. Transm.
, vol.9
, pp. 177-183
-
-
-
9
-
-
0001930151
-
Completely positive maps and entropy inequalities
-
G. Lindblad, "Completely positive maps and entropy inequalities," Commun. Math. Phys., vol. 40, pp. 147-151, 1975.
-
(1975)
Commun. Math. Phys.
, vol.40
, pp. 147-151
-
-
Lindblad, G.1
-
11
-
-
0000092846
-
Classical information capacity of a quantum channel
-
P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and W. K. Wootters, "Classical information capacity of a quantum channel," Phys. Rev. A, vol. 54, pp. 1869-1876, 1996.
-
(1996)
Phys. Rev. A
, vol.54
, pp. 1869-1876
-
-
Hausladen, P.1
Jozsa, R.2
Schumacher, B.3
Westmoreland, M.4
Wootters, W.K.5
-
12
-
-
0031675590
-
The capacity of quantum channel for general signal states
-
Jan.
-
A. S. Holevo, "The capacity of quantum channel for general signal states," IEEE Trans. Inform. Theory vol. 44, pp. 269-273, Jan. 1998.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, pp. 269-273
-
-
Holevo, A.S.1
-
13
-
-
0000712477
-
Sending classical information via noisy quantum channels
-
B. Schumacher and M. D. Westmoreland, "Sending classical information via noisy quantum channels," Phys. Rev. A, vol. 56, pp. 131-138, 1997.
-
(1997)
Phys. Rev. A
, vol.56
, pp. 131-138
-
-
Schumacher, B.1
Westmoreland, M.D.2
-
15
-
-
0002499298
-
The proper formula for relative entropy and its asymptotics in quantum probability
-
F. Hiai and D. Petz, "The proper formula for relative entropy and its asymptotics in quantum probability," Commun. Math. Phys., vol. 143, pp. 99-114, 1991.
-
(1991)
Commun. Math. Phys.
, vol.143
, pp. 99-114
-
-
Hiai, F.1
Petz, D.2
-
18
-
-
0018019391
-
Information and quantum measurement
-
E. B. Davies, "Information and quantum measurement," IEEE Trans. Inform. Theory, vol. IT-24, pp. 596-599, 1978.
-
(1978)
IEEE Trans. Inform. Theory
, vol.IT-24
, pp. 596-599
-
-
Davies, E.B.1
-
20
-
-
0040702761
-
Properties of quantum entropy
-
Lecture Notes in Mathematics, L. Accardi and W. von Waldenfels, Eds. Berlin, Germany: Springer
-
D. Petz, "Properties of quantum entropy," in Quantum Probability and Applications II (Lecture Notes in Mathematics), vol. 1136, L. Accardi and W. von Waldenfels, Eds. Berlin, Germany: Springer, 1985, pp. 428-441.
-
(1985)
Quantum Probability and Applications II
, vol.1136
, pp. 428-441
-
-
Petz, D.1
-
21
-
-
84890378889
-
Affine parametrization of completely positive maps on a matrix algebra
-
A. Fujiwara and P. Algoet, "Affine parametrization of completely positive maps on a matrix algebra," submitted to Linear Algebra Appl.
-
Linear Algebra Appl
-
-
Fujiwara, A.1
Algoet, P.2
|