-
1
-
-
0000914024
-
Bargmann structure and Newton-Cartan theory
-
[1] C. Duval, G. Burdet, H.P. Künzle and M. Perrin, Bargmann structure and Newton-Cartan theory, Phys. Rev. D 31 (8) (1985) 1841-1853.
-
(1985)
Phys. Rev. D
, vol.31
, Issue.8
, pp. 1841-1853
-
-
Duval, C.1
Burdet, G.2
Künzle, H.P.3
Perrin, M.4
-
2
-
-
0000290032
-
Geometric quantization and localization of relativisitic spin systems
-
[2] C. Duval and J. Elhadad, Geometric quantization and localization of relativisitic spin systems, Contemp. Math. 132 (1992) 317-330.
-
(1992)
Contemp. Math.
, vol.132
, pp. 317-330
-
-
Duval, C.1
Elhadad, J.2
-
3
-
-
84972533490
-
Pukanszky's condition and symplectic induction
-
[3] C. Duval, J. Elhadad and G.M. Tuynman, Pukanszky's condition and symplectic induction, J. Diff. Geom. 36 (1992) 331-348.
-
(1992)
J. Diff. Geom.
, vol.36
, pp. 331-348
-
-
Duval, C.1
Elhadad, J.2
Tuynman, G.M.3
-
5
-
-
84980148563
-
Hamiltonian group actions and dynamical systems of calogero type
-
[5] D. Kazhdan, B. Kostant and S. Sternberg, Hamiltonian group actions and dynamical systems of calogero type, Comm. Pure Appl. Math. 31 (1978) 481-508.
-
(1978)
Comm. Pure Appl. Math.
, vol.31
, pp. 481-508
-
-
Kazhdan, D.1
Kostant, B.2
Sternberg, S.3
-
6
-
-
0003224947
-
-
Interscience-Wiley, New York
-
[6] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I, II (Interscience-Wiley, New York, 1963, 1969).
-
(1963)
Foundations of Differential Geometry
, vol.1-2
, pp. 1969
-
-
Kobayashi, S.1
Nomizu, K.2
-
7
-
-
0041623815
-
On certain unitary representations which arise from a quantization theory
-
Group Representations in Mathematics and Physics, ed. V. Bargman, Springer, Berlin
-
[7] B. Kostant, On certain unitary representations which arise from a quantization theory, in: Group Representations in Mathematics and Physics, ed. V. Bargman, Proc. Battelle Seattle 1969 Rencontres, Lecture Notes in Physics, Vol. 6 (Springer, Berlin, 1970) pp. 237-253.
-
(1970)
Proc. Battelle Seattle 1969 Rencontres, Lecture Notes in Physics
, vol.6
, pp. 237-253
-
-
Kostant, B.1
-
8
-
-
33745057539
-
Rieffel induction as generalized quantum Marsden-Weinstein reduction
-
[8] N.P. Landsman, Rieffel induction as generalized quantum Marsden-Weinstein reduction, J. Geom. Phys. 15 (1995) 285-319.
-
(1995)
J. Geom. Phys.
, vol.15
, pp. 285-319
-
-
Landsman, N.P.1
-
9
-
-
84968468460
-
Semidirect products and reduction in machanics
-
[9] J.E. Marsden, T. Ratiu and A. Weinstein, Semidirect products and reduction in machanics, Trans. AMS 281 (1984) 147-177.
-
(1984)
Trans. AMS
, vol.281
, pp. 147-177
-
-
Marsden, J.E.1
Ratiu, T.2
Weinstein, A.3
-
10
-
-
0010097118
-
On the theory of exponential groups
-
[10] L. Pukanszky, On the theory of exponential groups, Trans. AMS 126 (1967) 487-507.
-
(1967)
Trans. AMS
, vol.126
, pp. 487-507
-
-
Pukanszky, L.1
-
11
-
-
0016546519
-
Representations of a semidirect product by quantization
-
[11] J.H. Rawnsley, Representations of a semidirect product by quantization, Math. Proc. Camb. Phil. Soc. 78 (1975) 345-350.
-
(1975)
Math. Proc. Camb. Phil. Soc.
, vol.78
, pp. 345-350
-
-
Rawnsley, J.H.1
-
12
-
-
0010209832
-
Geometric quantization and quantum mechanics
-
Springer, Berlin
-
[12] J. Śniatycki, Geometric quantization and quantum mechanics, Appl. Math. Sci. 50 (Springer, Berlin, 1980).
-
(1980)
Appl. Math. Sci.
, vol.50
-
-
Śniatycki, J.1
-
14
-
-
0001695762
-
Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field
-
[14] S. Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci. 74 (1977) 5253-5254.
-
(1977)
Proc. Nat. Acad. Sci.
, vol.74
, pp. 5253-5254
-
-
Sternberg, S.1
-
15
-
-
0042216365
-
A universal phase space for particles in Yang-Mills fields
-
[15] A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978) 417-420.
-
(1978)
Lett. Math. Phys.
, vol.2
, pp. 417-420
-
-
Weinstein, A.1
-
16
-
-
0010095383
-
Induced representations and induced hamiltonian actions
-
[16] S. Zakrzewski, Induced representations and induced hamiltonian actions, J. Geom. Phys. 3 (1986) 211-219.
-
(1986)
J. Geom. Phys.
, vol.3
, pp. 211-219
-
-
Zakrzewski, S.1
|