-
1
-
-
0029563009
-
Telomeres: Beginning to understand the end
-
Zakian VA. Telomeres: beginning to understand the end. Science. 270:1995;1601-1607.
-
(1995)
Science
, vol.270
, pp. 1601-1607
-
-
Zakian, V.A.1
-
2
-
-
0028201293
-
Activation of telomerase in a human tumor
-
de Lange T. Activation of telomerase in a human tumor. Proc Natl Acad Sci USA. 91:1994;2882-2885.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 2882-2885
-
-
De Lange, T.1
-
3
-
-
0028958708
-
Telomeres and telomerase in aging and cancer
-
Harley CB, Villeponteau B. Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev. 5:1995;249-255.
-
(1995)
Curr Opin Genet Dev
, vol.5
, pp. 249-255
-
-
Harley, C.B.1
Villeponteau, B.2
-
4
-
-
0029128798
-
Telomerase and DNA end replication: No longer a lagging strand problem
-
Lingner J, Cooper JP, Cech TR. Telomerase and DNA end replication: no longer a lagging strand problem. Science. 269:1995;1533-1534.
-
(1995)
Science
, vol.269
, pp. 1533-1534
-
-
Lingner, J.1
Cooper, J.P.2
Cech, T.R.3
-
6
-
-
0025944831
-
A conserved secondary structure for telomerase RNA
-
Romero DP, Blackburn EH. A conserved secondary structure for telomerase RNA. Cell. 67:1991;343-353.
-
(1991)
Cell
, vol.67
, pp. 343-353
-
-
Romero, D.P.1
Blackburn, E.H.2
-
7
-
-
0028106199
-
Telomerase RNAs of different ciliates have a common secondary structure and a permuted template
-
Lingner J, Hendrick LL, Cech TR. Telomerase RNAs of different ciliates have a common secondary structure and a permuted template. Genes Dev. 8:1994;1984-1998.
-
(1994)
Genes Dev
, vol.8
, pp. 1984-1998
-
-
Lingner, J.1
Hendrick, L.L.2
Cech, T.R.3
-
8
-
-
0029763191
-
Purification of telomerase from Euplotes aediculatus: Requirement of a primer 3′ overhang
-
Lingner J, Cech TR. Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci USA. 93:1996;10712-10717.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 10712-10717
-
-
Lingner, J.1
Cech, T.R.2
-
9
-
-
0030938901
-
Reverse transcriptase motifs in the catalytic subunit of telomerase
-
of outstanding interest. The identification of the catalytic subunit genes of telomerase from Euplotes and S. cerevisiae reveals their relationship to reverse transcriptase. The importance of the RT-domain is demonstrated through point mutations of the active site residues, which alleviate telomerase function in vivo and in vitro.
-
Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR. Reverse transcriptase motifs in the catalytic subunit of telomerase. of outstanding interest Science. 276:1997;561-567 The identification of the catalytic subunit genes of telomerase from Euplotes and S. cerevisiae reveals their relationship to reverse transcriptase. The importance of the RT-domain is demonstrated through point mutations of the active site residues, which alleviate telomerase function in vivo and in vitro.
-
(1997)
Science
, vol.276
, pp. 561-567
-
-
Lingner, J.1
Hughes, T.R.2
Shevchenko, A.3
Mann, M.4
Lundblad, V.5
Cech, T.R.6
-
10
-
-
0030455861
-
Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes
-
Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics. 144:1996;1399-1412.
-
(1996)
Genetics
, vol.144
, pp. 1399-1412
-
-
Lendvay, T.S.1
Morris, D.K.2
Sah, J.3
Balasubramanian, B.4
Lundblad, V.5
-
11
-
-
0024973811
-
A mutant with a defect in telomere elongation leads to senescence in yeast
-
Lundblad V, Szostak JW. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell. 57:1989;633-643.
-
(1989)
Cell
, vol.57
, pp. 633-643
-
-
Lundblad, V.1
Szostak, J.W.2
-
12
-
-
0024978857
-
A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis
-
Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 337:1989;331-337.
-
(1989)
Nature
, vol.337
, pp. 331-337
-
-
Greider, C.W.1
Blackburn, E.H.2
-
13
-
-
0028206048
-
Function and structure relationships in DNA polymerases
-
Joyce CM, Steitz TA. Function and structure relationships in DNA polymerases. Annu Rev Biochem. 63:1994;777-822.
-
(1994)
Annu Rev Biochem
, vol.63
, pp. 777-822
-
-
Joyce, C.M.1
Steitz, T.A.2
-
14
-
-
0029881023
-
Structural and mechanistic relationships between nucleic acid polymerases
-
Sousa R. Structural and mechanistic relationships between nucleic acid polymerases. Trends Biochem Sci. 21:1996;186-190.
-
(1996)
Trends Biochem Sci
, vol.21
, pp. 186-190
-
-
Sousa, R.1
-
15
-
-
0025006614
-
Origin and evolution of retroelements based upon their reverse transcriptase sequences
-
Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9:1990;3353-3362.
-
(1990)
EMBO J
, vol.9
, pp. 3353-3362
-
-
Xiong, Y.1
Eickbush, T.H.2
-
16
-
-
0030848952
-
The catalytic subunit of yeast telomerase
-
of outstanding interest. of special interest. The yeast EST2 gene is identified as a result of the synthetic phenotype of its deletion with rad52. The authors conclude, as do Lingner et al. [9], that EST2 encodes the catalytic subunit of telomerase.
-
Counter CM, Meyerson M, Eaton EN, Weinberg RA. The catalytic subunit of yeast telomerase. of outstanding interest. of special interest Proc Natl Acad Sci USA. 94:1997;9202-9207 The yeast EST2 gene is identified as a result of the synthetic phenotype of its deletion with rad52. The authors conclude, as do Lingner et al. [9], that EST2 encodes the catalytic subunit of telomerase.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 9202-9207
-
-
Counter, C.M.1
Meyerson, M.2
Eaton, E.N.3
Weinberg, R.A.4
-
17
-
-
0030819894
-
Telomerase catalytic subunit homologs from fission yeast and human
-
of special interest. Identification of the human and S. pombe homologs of Euplotes and yeast TERT. The detailed analysis of all known telomerase RT sequences reveals the characteristics and unique features of this protein family. As in [18], a good correlation of the telomerase RT mRNA levels and telomerase activity is shown in mortal and immortal cells. See also [18-20].
-
Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. of special interest Science. 277:1997;955-959 Identification of the human and S. pombe homologs of Euplotes and yeast TERT. The detailed analysis of all known telomerase RT sequences reveals the characteristics and unique features of this protein family. As in [18], a good correlation of the telomerase RT mRNA levels and telomerase activity is shown in mortal and immortal cells. See also [18-20].
-
(1997)
Science
, vol.277
, pp. 955-959
-
-
Nakamura, T.M.1
Morin, G.B.2
Chapman, K.B.3
Weinrich, S.L.4
Andrews, W.H.5
Lingner, J.6
Harley, C.B.7
Cech, T.R.8
-
18
-
-
0030745448
-
HEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization
-
of special interest. Identification of the human homolog of Euplotes and yeast TERT. An extensive survey of the mRNA levels in mortal and immortal cell types shows a good correlation with telomerase activity. See also [17,19,20].
-
Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD, Ziaugra L, Beijersbergen RL, Davidoff MJ, Liu QY, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. of special interest Cell. 90:1997;785-795 Identification of the human homolog of Euplotes and yeast TERT. An extensive survey of the mRNA levels in mortal and immortal cell types shows a good correlation with telomerase activity. See also [17,19,20].
-
(1997)
Cell
, vol.90
, pp. 785-795
-
-
Meyerson, M.1
Counter, C.M.2
Eaton, E.N.3
Ellisen, L.W.4
Steiner, P.5
Caddle, S.D.6
Ziaugra, L.7
Beijersbergen, R.L.8
Davidoff, M.J.9
Liu, Q.Y.10
-
19
-
-
0030681073
-
Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types
-
of special interest. Identification of the human homolog of Euplotes and yeast TERT. See also [17,18,20].
-
Kilian A, Bowtell DDL, Abud HE, Hime GR, Veuter DJ, Keese PK, Duncan EL, Reddel RR, Jefferson RA. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. of special interest Hum Mol Genet. 6:1997;2011-2019 Identification of the human homolog of Euplotes and yeast TERT. See also [17,18,20].
-
(1997)
Hum Mol Genet
, vol.6
, pp. 2011-2019
-
-
Kilian, A.1
Bowtell, D.D.L.2
Abud, H.E.3
Hime, G.R.4
Veuter, D.J.5
Keese, P.K.6
Duncan, E.L.7
Reddel, R.R.8
Jefferson, R.A.9
-
20
-
-
0030668722
-
Human telomerase contains evolutionarily conserved catalytic and structural subunits
-
of special interest. Identification of the human homolog of Euplotes and yeast TERT. Active-site mutants that alleviate telomerase activity are identified. The TP1/TLP1 telomerase protein subunit is co-immunoprecipitated with epitope-tagged telomerase RT. See also [17-19].
-
Harrington L, Zhou W, McPhail T, Oulton R, Yeung DSK, Mar V, Bass MB, Robinson MO. Human telomerase contains evolutionarily conserved catalytic and structural subunits. of special interest Genes Dev. 11:1997;3109-3115 Identification of the human homolog of Euplotes and yeast TERT. Active-site mutants that alleviate telomerase activity are identified. The TP1/TLP1 telomerase protein subunit is co-immunoprecipitated with epitope-tagged telomerase RT. See also [17-19].
-
(1997)
Genes Dev
, vol.11
, pp. 3109-3115
-
-
Harrington, L.1
Zhou, W.2
McPhail, T.3
Oulton, R.4
Yeung, D.S.K.5
Mar, V.6
Bass, M.B.7
Robinson, M.O.8
-
21
-
-
0030848018
-
Telomerase and retrotransposons - Which came first?
-
of special interest. The evolution of retrotransposons and telomerase is discussed. Two alternative phylogenetic trees are proposed. In one, telomerases preceded the non-LTR retrotransposons, whereas in the other, telomerases evolved from parasitic genetic elements.
-
Eickbush TH. Telomerase and retrotransposons - which came first? of special interest Science. 277:1997;911-912 The evolution of retrotransposons and telomerase is discussed. Two alternative phylogenetic trees are proposed. In one, telomerases preceded the non-LTR retrotransposons, whereas in the other, telomerases evolved from parasitic genetic elements.
-
(1997)
Science
, vol.277
, pp. 911-912
-
-
Eickbush, T.H.1
-
22
-
-
0030479536
-
The origin of interspersed repeats in the human genome
-
Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 6:1996;743-748.
-
(1996)
Curr Opin Genet Dev
, vol.6
, pp. 743-748
-
-
Smit, A.F.1
-
23
-
-
0025316079
-
Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila
-
Biessmann H, Mason JM, Ferry K, d'Hulst M, Valgeirsdottir K, Traverse KL, Pardue ML. Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila. Cell. 61:1990;663-673.
-
(1990)
Cell
, vol.61
, pp. 663-673
-
-
Biessmann, H.1
Mason, J.M.2
Ferry, K.3
D'Hulst, M.4
Valgeirsdottir, K.5
Traverse, K.L.6
Pardue, M.L.7
-
24
-
-
0027145631
-
Transposons in place of telomeric repeats at a Drosophila telomere
-
Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 75:1993;1083-1093.
-
(1993)
Cell
, vol.75
, pp. 1083-1093
-
-
Levis, R.W.1
Ganesan, R.2
Houtchens, K.3
Tolar, L.A.4
Sheen, F.M.5
-
25
-
-
0028990123
-
Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme
-
Collins K, Kobayashi R, Greider CW. Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell. 81:1995;677-686.
-
(1995)
Cell
, vol.81
, pp. 677-686
-
-
Collins, K.1
Kobayashi, R.2
Greider, C.W.3
-
26
-
-
0031036350
-
A mammalian telomerase-associated protein
-
Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB, Arruda I, Robinson MO. A mammalian telomerase-associated protein. Science. 275:1997;973-977.
-
(1997)
Science
, vol.275
, pp. 973-977
-
-
Harrington, L.1
McPhail, T.2
Mar, V.3
Zhou, W.4
Oulton, R.5
Bass, M.B.6
Arruda, I.7
Robinson, M.O.8
-
27
-
-
0030898989
-
TLP1 - A gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family
-
Nakayama JI, Saito M, Nakamura H, Matsuura A, Ishikawa F. TLP1 - a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell. 88:1997;875-884.
-
(1997)
Cell
, vol.88
, pp. 875-884
-
-
Nakayama, J.I.1
Saito, M.2
Nakamura, H.3
Matsuura, A.4
Ishikawa, F.5
-
28
-
-
0030857774
-
Telomerase and telomere-binding proteins - Controlling the endgame
-
Shore D. Telomerase and telomere-binding proteins - controlling the endgame. Trends Biochem Sci. 22:1997;233-235.
-
(1997)
Trends Biochem Sci
, vol.22
, pp. 233-235
-
-
Shore, D.1
-
29
-
-
0031474466
-
Programmed translational frameshifting in a gene required for yeast telomere replication
-
Morris DK, Lundblad V. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr Biol. 7:1997;969-976.
-
(1997)
Curr Biol
, vol.7
, pp. 969-976
-
-
Morris, D.K.1
Lundblad, V.2
-
30
-
-
0030881688
-
Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity
-
Lingner J, Cech TR, Hughes TR, Lundblad V. Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci USA. 94:1997;11190-11195.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 11190-11195
-
-
Lingner, J.1
Cech, T.R.2
Hughes, T.R.3
Lundblad, V.4
-
31
-
-
0002952287
-
Telomere proteins
-
E.H. Blackburn, Greider C.W. New York: Cold Spring Harbor Laboratory Press
-
Fang G, Cech TR. Telomere proteins. Blackburn EH, Greider CW. Telomeres. 1995;69-105 Cold Spring Harbor Laboratory Press, New York.
-
(1995)
Telomeres
, pp. 69-105
-
-
Fang, G.1
Cech, T.R.2
-
32
-
-
0027104087
-
Euplotes crassus has genes encoding telomere-binding proteins and telomere-binding protein homologs
-
Wang W, Skopp R, Scofield M, Price C. Euplotes crassus has genes encoding telomere-binding proteins and telomere-binding protein homologs. Nucleic Acids Res. 20:1992;6621-6629.
-
(1992)
Nucleic Acids Res
, vol.20
, pp. 6621-6629
-
-
Wang, W.1
Skopp, R.2
Scofield, M.3
Price, C.4
-
33
-
-
0029761346
-
RTP: A candidate telomere protein that is associated with DNA replication
-
Skopp R, Wang W, Price C. rTP: a candidate telomere protein that is associated with DNA replication. Chromosoma. 105:1996;82-91.
-
(1996)
Chromosoma
, vol.105
, pp. 82-91
-
-
Skopp, R.1
Wang, W.2
Price, C.3
-
34
-
-
0028822203
-
Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint
-
Garvik B, Carson M, Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol. 15:1995;6128-6138.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 6128-6138
-
-
Garvik, B.1
Carson, M.2
Hartwell, L.3
-
35
-
-
0031029001
-
Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13
-
ts allele. Therefore, Stn1 and Cdc13 function cooperatively at telomeres.
-
ts allele. Therefore, Stn1 and Cdc13 function cooperatively at telomeres.
-
(1997)
Genes Dev
, vol.11
, pp. 512-527
-
-
Grandin, N.1
Reed, S.I.2
Charbonneau, M.3
-
36
-
-
0029845892
-
Cdc13p: A single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance
-
of outstanding interest. The identification of a cdc13-est allele unravels the crucial role of this protein for telomerase-mediated telomere extension. The affinity for single-stranded telomeric DNA in vitro suggests further that it is a telomere DNA-binding protein.
-
Nugent CI, Hughes TR, Lue NF, Lundblad V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. of outstanding interest Science. 274:1996;249-252 The identification of a cdc13-est allele unravels the crucial role of this protein for telomerase-mediated telomere extension. The affinity for single-stranded telomeric DNA in vitro suggests further that it is a telomere DNA-binding protein.
-
(1996)
Science
, vol.274
, pp. 249-252
-
-
Nugent, C.I.1
Hughes, T.R.2
Lue, N.F.3
Lundblad, V.4
-
37
-
-
0030447657
-
The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo
-
Lin JJ, Zakian VA. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci USA. 93:1996;13760-13765.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 13760-13765
-
-
Lin, J.J.1
Zakian, V.A.2
-
38
-
-
0029155795
-
Telomerase in yeast
-
Cohn M, Blackburn EH. Telomerase in yeast. Science. 269:1995;396-400.
-
(1995)
Science
, vol.269
, pp. 396-400
-
-
Cohn, M.1
Blackburn, E.H.2
-
39
-
-
0030462146
-
Est1 has the properties of a single-stranded telomere end-binding protein
-
Virta-Pearlman V, Morris DK, Lundblad V. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10:1996;3094-3104.
-
(1996)
Genes Dev
, vol.10
, pp. 3094-3104
-
-
Virta-Pearlman, V.1
Morris, D.K.2
Lundblad, V.3
-
40
-
-
0029033695
-
An in vitro assay for Saccharomyces telomerase requires EST1
-
Lin JJ, Zakian VA. An in vitro assay for Saccharomyces telomerase requires EST1. Cell. 81:1995;1127-1135.
-
(1995)
Cell
, vol.81
, pp. 1127-1135
-
-
Lin, J.J.1
Zakian, V.A.2
-
41
-
-
0029883887
-
Association of the Est1 protein with telomerase activity in yeast
-
Steiner BR, Hidaka K, Futcher B. Association of the Est1 protein with telomerase activity in yeast. Proc Natl Acad Sci USA. 93:1996;2817-2821.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 2817-2821
-
-
Steiner, B.R.1
Hidaka, K.2
Futcher, B.3
-
42
-
-
0019568388
-
All genesized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus
-
Klobutcher LA, Swanton MT, Donini P, Prescott DM. All genesized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc Natl Acad Sci USA. 78:1981;3015-3019.
-
(1981)
Proc Natl Acad Sci USA
, vol.78
, pp. 3015-3019
-
-
Klobutcher, L.A.1
Swanton, M.T.2
Donini, P.3
Prescott, D.M.4
-
43
-
-
0027509950
-
Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase
-
Wellinger RJ, Wolf AJ, Zakian VA. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell. 72:1993;51-60.
-
(1993)
Cell
, vol.72
, pp. 51-60
-
-
Wellinger, R.J.1
Wolf, A.J.2
Zakian, V.A.3
-
44
-
-
0029953557
-
Evidence for a new step in telomere maintenance
-
of outstanding interest. 3′ terminal extensions on both ends of a linear plasmid are detectable even in telomerase-deficient strains. As semiconservative DNA replication is predicted to create a blunt end on the leading strand, a 5′-3′ exonuclease is postulated to generate these overhangs. This step could prepare the telomere to become a suitable substrate for telomerase in wild-type cells.
-
Wellinger RJ, Ethier K, Labrecque P, Zakian VA. Evidence for a new step in telomere maintenance. of outstanding interest Cell. 85:1996;423-433 3′ terminal extensions on both ends of a linear plasmid are detectable even in telomerase-deficient strains. As semiconservative DNA replication is predicted to create a blunt end on the leading strand, a 5′-3′ exonuclease is postulated to generate these overhangs. This step could prepare the telomere to become a suitable substrate for telomerase in wild-type cells.
-
(1996)
Cell
, vol.85
, pp. 423-433
-
-
Wellinger, R.J.1
Ethier, K.2
Labrecque, P.3
Zakian, V.A.4
-
45
-
-
0031000884
-
Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening
-
Makarov VL, Hirose Y, Langmore JP. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell. 88:1997;657-666.
-
(1997)
Cell
, vol.88
, pp. 657-666
-
-
Makarov, V.L.1
Hirose, Y.2
Langmore, J.P.3
-
46
-
-
0030982721
-
The terminal DNA structure of mammalian chromosomes
-
McElligott R, Wellinger RJ. The terminal DNA structure of mammalian chromosomes. EMBO J. 16:1997;3705-3714.
-
(1997)
EMBO J
, vol.16
, pp. 3705-3714
-
-
McElligott, R.1
Wellinger, R.J.2
-
47
-
-
0030731928
-
Normal human chromosomes have long G-rich telomeric overhangs at one end
-
Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11:1997;2810-2821.
-
(1997)
Genes Dev
, vol.11
, pp. 2810-2821
-
-
Wright, W.E.1
Tesmer, V.M.2
Huffman, K.E.3
Levene, S.D.4
Shay, J.W.5
-
49
-
-
0029743764
-
Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats
-
of special interest. The natural telomeric sequence is important for Rap1p binding which mediates telomere length control through its carboxy-terminal domain.
-
Krauskopf A, Blackburn EH. Control of telomere growth by interactions of RAP1 with the most distal telomeric repeats. of special interest Nature. 383:1996;354-357 The natural telomeric sequence is important for Rap1p binding which mediates telomere length control through its carboxy-terminal domain.
-
(1996)
Nature
, vol.383
, pp. 354-357
-
-
Krauskopf, A.1
Blackburn, E.H.2
-
50
-
-
0031038170
-
Regulation of telomere length and function by a Myb-domain protein in fission yeast [see comments]
-
of special interest. The S. pombe double-stranded telomere binding protein Taz1 is a Myb-domain protein which is dispensable for mitotic growth. Its deletion causes a massive increase of telomere length and alleviates telomere silencing.
-
Cooper JP, Nimmo ER, Allshire RC, Cech TR. Regulation of telomere length and function by a Myb-domain protein in fission yeast [see comments]. of special interest Nature. 385:1997;744-747 The S. pombe double-stranded telomere binding protein Taz1 is a Myb-domain protein which is dispensable for mitotic growth. Its deletion causes a massive increase of telomere length and alleviates telomere silencing.
-
(1997)
Nature
, vol.385
, pp. 744-747
-
-
Cooper, J.P.1
Nimmo, E.R.2
Allshire, R.C.3
Cech, T.R.4
-
51
-
-
0031036351
-
A protein-counting mechanism for telomere length regulation in yeast
-
of special interest. The Rap1 carboxyl terminus affects telomere length even when targeted to the telomere through a heterologous DNA-binding domain. A Rap1p counting mechanism is proposed for telomere length control.
-
marcand S, Gilson E, Shore D. A protein-counting mechanism for telomere length regulation in yeast. of special interest Science. 275:1997;986-990 The Rap1 carboxyl terminus affects telomere length even when targeted to the telomere through a heterologous DNA-binding domain. A Rap1p counting mechanism is proposed for telomere length control.
-
(1997)
Science
, vol.275
, pp. 986-990
-
-
Marcand, S.1
Gilson, E.2
Shore, D.3
-
52
-
-
0031027618
-
Control of telomere length by the human telomeric protein TRF1
-
of special interest. Expression of dominant mutants of this Myb-domain DNA-binding protein demonstrates its role in telomere length control in human cells.
-
van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. of special interest Nature. 385:1997;740-743 Expression of dominant mutants of this Myb-domain DNA-binding protein demonstrates its role in telomere length control in human cells.
-
(1997)
Nature
, vol.385
, pp. 740-743
-
-
Van Steensel, B.1
De Lange, T.2
-
53
-
-
0030837883
-
Proteins that bind to double-stranded regions of telomeric DNA
-
of special interest. Comprehensive review on double-stranded telomere binding proteins, their relation and their effects on telomere length.
-
Brun C, Marcand S, Gilson E. Proteins that bind to double-stranded regions of telomeric DNA. of special interest Trends Cell Biol. 7:1997;317-324 Comprehensive review on double-stranded telomere binding proteins, their relation and their effects on telomere length.
-
(1997)
Trends Cell Biol
, vol.7
, pp. 317-324
-
-
Brun, C.1
Marcand, S.2
Gilson, E.3
-
54
-
-
0022387528
-
CDC17: An essential gene that prevents telomere elongation in yeast
-
Carson MJ, Hartwell L. CDC17: an essential gene that prevents telomere elongation in yeast. Cell. 42:1985;249-257.
-
(1985)
Cell
, vol.42
, pp. 249-257
-
-
Carson, M.J.1
Hartwell, L.2
-
55
-
-
0029772312
-
Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae
-
of special interest. Certain mutations in DNA replication factor C and DNA polymerase α, which slow down DNA replication, cause striking increases in telomere length.
-
Adams AK, Holm C. Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. of special interest Mol Cell Biol. 16:1996;4614-4620 Certain mutations in DNA replication factor C and DNA polymerase α, which slow down DNA replication, cause striking increases in telomere length.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 4614-4620
-
-
Adams, A.K.1
Holm, C.2
-
56
-
-
0010639550
-
Coordinate regulation of G- and C-strand length during new telomere synthesis
-
in press
-
Fan X, Price CM. Coordinate regulation of G- and C-strand length during new telomere synthesis. Mol Biol Cell. 1998;. in press.
-
(1998)
Mol Biol Cell
-
-
Fan, X.1
Price, C.M.2
-
57
-
-
0028178792
-
The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
-
Schulz VP, Zakian VA. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell. 76:1994;145-155.
-
(1994)
Cell
, vol.76
, pp. 145-155
-
-
Schulz, V.P.1
Zakian, V.A.2
-
58
-
-
0029088371
-
TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene
-
Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, Petes TD. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell. 82:1995;823-829.
-
(1995)
Cell
, vol.82
, pp. 823-829
-
-
Greenwell, P.W.1
Kronmal, S.L.2
Porter, S.E.3
Gassenhuber, J.4
Obermaier, B.5
Petes, T.D.6
-
59
-
-
0029919650
-
The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae
-
Porter SE, Greenwell PW, Ritchie KB, Petes TD. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24:1996;582-585.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 582-585
-
-
Porter, S.E.1
Greenwell, P.W.2
Ritchie, K.B.3
Petes, T.D.4
-
60
-
-
0029843408
-
Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance
-
Boulton SJ, Jackson SP. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24:1996;4639-4648.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 4639-4648
-
-
Boulton, S.J.1
Jackson, S.P.2
|