메뉴 건너뛰기




Volumn 27, Issue 7, 1998, Pages 51-55

Solution of the matrix riccati equation for the linear quadratic control problems

Author keywords

Control; Matrix; Optimal; Riccati; Solution

Indexed keywords


EID: 0032054697     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0895-7177(98)00035-1     Document Type: Article
Times cited : (58)

References (15)
  • 1
    • 0000892134 scopus 로고
    • An overview on the solutions of the algebraic matrix Riccati equation and related problems
    • 1. M. Jamshidi, An overview on the solutions of the algebraic matrix Riccati equation and related problems, Large Scale Systems 1, 167-192, (1980).
    • (1980) Large Scale Systems , vol.1 , pp. 167-192
    • Jamshidi, M.1
  • 3
    • 0010629686 scopus 로고
    • On the conjugate point condition for the control problem
    • 3. J.V. Breakwell and Y.C. Ho, On the conjugate point condition for the control problem, Int. J. Eng. Sci. 2, 567-579, (1965).
    • (1965) Int. J. Eng. Sci. , vol.2 , pp. 567-579
    • Breakwell, J.V.1    Ho, Y.C.2
  • 4
    • 0010590108 scopus 로고
    • On the Jacobi conditions for control problems with input delay
    • 4. M. Razzaghi and M. Jamshidi, On the Jacobi conditions for control problems with input delay, In Proc. IEE, 122, pp. 1313-1315, (1975).
    • (1975) Proc. IEE , vol.122 , pp. 1313-1315
    • Razzaghi, M.1    Jamshidi, M.2
  • 5
    • 0018017992 scopus 로고
    • Conjugate point conditions for linear quadratic control problems
    • 5. M. Razzaghi, Conjugate point conditions for linear quadratic control problems, Aut. Contr. Theory and Appl. 6, 51-53, (1978).
    • (1978) Aut. Contr. Theory and Appl. , vol.6 , pp. 51-53
    • Razzaghi, M.1
  • 6
    • 21144478176 scopus 로고
    • Closed analytical solution of Riccati type matrix differential equations
    • 6. L. Jodar and E. Navarro, Closed analytical solution of Riccati type matrix differential equations, Indian J. Pure and Appl. Math. 23, 185-187, (1992).
    • (1992) Indian J. Pure and Appl. Math. , vol.23 , pp. 185-187
    • Jodar, L.1    Navarro, E.2
  • 7
    • 0010555155 scopus 로고
    • A negative exponential solution for the matrix Riccati equation
    • 7. D.R. Vaughn, A negative exponential solution for the matrix Riccati equation, IEEE Trans Automat. Control 14, 72-75, (1969).
    • (1969) IEEE Trans Automat. Control , vol.14 , pp. 72-75
    • Vaughn, D.R.1
  • 8
    • 0010593434 scopus 로고    scopus 로고
    • A Schur method for the solution of the matrix Riccati equation
    • 8. M. Razzaghi, A Schur method for the solution of the matrix Riccati equation, Int. J. Math. and Math. Sci. 20, 335-338, (1997).
    • (1997) Int. J. Math. and Math. Sci. , vol.20 , pp. 335-338
    • Razzaghi, M.1
  • 9
    • 0018020841 scopus 로고
    • Solution of the matrix riccati equation in optimal control
    • 9. M. Razzaghi, Solution of the matrix Riccati equation in optimal control, Information Sci. 16, 61-73, (1978).
    • (1978) Information Sci. , vol.16 , pp. 61-73
    • Razzaghi, M.1
  • 10
    • 0010595297 scopus 로고
    • A computational solution for a matrix Riccati differential equation
    • 10. M. Razzaghi, A computational solution for a matrix Riccati differential equation, Numerische Math. 32, 271-279, (1979).
    • (1979) Numerische Math. , vol.32 , pp. 271-279
    • Razzaghi, M.1
  • 11
    • 0028427617 scopus 로고
    • Analytic solution of the Riccati equation for the homing missile linear quadratic control problem
    • 11. N. Lovren and M. Tomic, Analytic solution of the Riccati equation for the homing missile linear quadratic control problem, J. Guidance, Cont. Dynamics 17, 619-621, (1994).
    • (1994) J. Guidance, Cont. Dynamics , vol.17 , pp. 619-621
    • Lovren, N.1    Tomic, M.2
  • 13
    • 0000011589 scopus 로고
    • Contribution to the theory of optimal control
    • 13. R.E. Kalman, Contribution to the theory of optimal control, Bol. Soc. Mat. Mexicana 5, 102-119, (1960).
    • (1960) Bol. Soc. Mat. Mexicana , vol.5 , pp. 102-119
    • Kalman, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.