-
3
-
-
0028382656
-
Convolution, filtering, and multiplexing in fractional fourier domains and their relation to chirp and wavelet transforms
-
H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994).
-
(1994)
J. Opt. Soc. Am
, vol.A11
, pp. 547-559
-
-
Ozaktas, H.M.1
Barshan, B.2
Mendlovic, D.3
Onural, L.4
-
4
-
-
0031143161
-
Optimal filtering in fractional fourier domains
-
M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997).
-
(1997)
IEEE Trans. Signal Process
, vol.45
, pp. 1129-1143
-
-
Kutay, M.A.1
Ozaktas, H.M.2
Arikan, O.3
Onural, L.4
-
5
-
-
0030243105
-
Digital computation of the fractional fourier transform
-
H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996).
-
(1996)
IEEE Trans. Signal Process
, vol.44
, pp. 2141-2150
-
-
Ozaktas, H.M.1
Arikan, O.2
Kutay, M.A.3
Bozdagi, G.4
-
6
-
-
0027641018
-
Fourier transforms of fractional order and their optical interpretation
-
H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).
-
(1993)
Opt. Commun
, vol.101
, pp. 163-169
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
7
-
-
0027652515
-
Fractional fourier transformations and their optical implementation: Part i
-
D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transformations and their optical implementation: part I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993).
-
(1993)
J. Opt. Soc. Am
, vol.A10
, pp. 1875-1881
-
-
Mendlovic, D.1
Ozaktas, H.M.2
-
8
-
-
0027740848
-
Fractional fourier transformations and their optical implementation: Part ii
-
H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transformations and their optical implementation: part II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).
-
(1993)
J. Opt. Soc. Am
, vol.A10
, pp. 2522-2531
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
9
-
-
0027682286
-
Image rotation, wigner rotation, and the fractional fourier transform
-
A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
-
(1993)
J. Opt. Soc. Am
, vol.A10
, pp. 2181-2186
-
-
Lohmann, A.W.1
-
10
-
-
0029389506
-
Optical implementation of the two-dimensional fractional fourier transform with different orders in two dimensions
-
A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in two dimensions,” Opt. Commun. 120, 134–138 (1995).
-
(1995)
Opt. Commun
, vol.120
, pp. 134-138
-
-
Sahin, A.1
Ozaktas, H.M.2
Mendlovic, D.3
-
11
-
-
0001515953
-
Immersion of the fourier transform in a continuous group of functional transformations
-
E. U. Condon, “Immersion of the Fourier transform in a continuous group of functional transformations,” Proc. Natl. Acad. Sci. USA 23, 158–164 (1937).
-
(1937)
Proc. Natl. Acad. Sci. USA
, vol.23
, pp. 158-164
-
-
Condon, E.U.1
-
12
-
-
77958407025
-
The fractional fourier transform and its application in quantum mechanics
-
V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Appl. 25, 241–245 (1980).
-
(1980)
J. Inst. Math. Appl
, vol.25
, pp. 241-245
-
-
Namias, V.1
-
13
-
-
77957689582
-
On namias’s fractional fourier transform
-
A. C. McBride and F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159–175 (1987).
-
(1987)
IMA J. Appl. Math
, vol.39
, pp. 159-175
-
-
McBride, A.C.1
Kerr, F.H.2
-
14
-
-
0028546458
-
The fractional fourier transform and timefrequency representations
-
L. M. Almeida, “The fractional Fourier transform and timefrequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994).
-
(1994)
IEEE Trans. Signal Process
, vol.42
, pp. 3084-3091
-
-
Almeida, L.M.1
-
16
-
-
0028546549
-
Fractional fourier transform as a tool for analyzing beam propagation and spherical mirror resonators
-
H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680 (1994).
-
(1994)
Opt. Lett
, vol.19
, pp. 1678-1680
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
17
-
-
0028515765
-
Fresnel diffraction and the fractional-order fourier transform
-
P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994).
-
(1994)
Opt. Lett
, vol.19
, pp. 1388-1390
-
-
Pellat-Finet, P.1
-
18
-
-
0028494881
-
Fractional-order fourier transform and fourier optics
-
P. Pellat-Finet and G. Bonnet, “Fractional-order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994).
-
(1994)
Opt. Commun
, vol.111
, pp. 141-154
-
-
Pellat-Finet, P.1
Bonnet, G.2
-
19
-
-
0028496555
-
Fractional fourier transforms and optical systems
-
L. M. Bernardo and O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517–522 (1994).
-
(1994)
Opt. Commun
, vol.110
, pp. 517-522
-
-
Bernardo, L.M.1
Soares, O.D.D.2
-
20
-
-
84946282862
-
The angular fourier transform in optical propagation problems
-
T. Alieva, V. Lopez, F. Agullo-Lopez, and L. B. Almeida, “The angular Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994).
-
(1994)
J. Mod. Opt
, vol.41
, pp. 1037-1044
-
-
Alieva, T.1
Lopez, V.2
Agullo-Lopez, F.3
Almeida, L.B.4
-
21
-
-
0030127112
-
Optical wave propagation of fractal fields
-
T. Alieva and F. Agullo-Lopez, “Optical wave propagation of fractal fields,” Opt. Commun. 125, 267–274 (1996).
-
(1996)
Opt. Commun
, vol.125
, pp. 267-274
-
-
Alieva, T.1
Agullo-Lopez, F.2
-
22
-
-
0027560182
-
Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum
-
D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridanil, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).
-
(1993)
Phys. Rev. Lett
, vol.70
, pp. 1244-1247
-
-
Smithey, D.T.1
Beck, M.2
Raymer, M.G.3
Faridanil, A.4
-
23
-
-
0343420262
-
A new positive timefrequency distribution
-
Institute of Electrical and Electronics Engineers, Piscataway, N.J
-
J. R. Fonollosa and C. L. Nikias, “A new positive timefrequency distribution,” in Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1994), pp. IV-301-IV-304.
-
(1994)
Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing
, pp. IV-301
-
-
Fonollosa, J.R.1
Nikias, C.L.2
-
24
-
-
0028539817
-
Radon transformation of timefrequency distributions for analysis of multicomponent signals
-
J. Wood and D. T. Barry, “Radon transformation of timefrequency distributions for analysis of multicomponent signals,” IEEE Trans. Signal Process. 42, 3166–3177 (1994).
-
(1994)
IEEE Trans. Signal Process
, vol.42
, pp. 3166-3177
-
-
Wood, J.1
Barry, D.T.2
-
25
-
-
0028459601
-
Relationships between the radon-wigner and fractional fourier transforms
-
A. W. Lohmann and B. H. Soffer, “Relationships between the Radon-Wigner and fractional Fourier transforms,” J. Opt. Soc. Am. A 11, 1798–1801 (1994).
-
(1994)
J. Opt. Soc. Am
, vol.A11
, pp. 1798-1801
-
-
Lohmann, A.W.1
Soffer, B.H.2
-
26
-
-
0030081464
-
Effect of fractional fourier transformation on time-frequency distributions belonging to the cohen class
-
H. M. Ozaktas, N. Erkaya, and M. A. Kutay, “Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class,” IEEE Signal Process. Lett. 3(2), 40–41 (1996).
-
(1996)
IEEE Signal Process. Lett
, vol.3
, Issue.2
, pp. 40-41
-
-
Ozaktas, H.M.1
Erkaya, N.2
Kutay, M.A.3
-
27
-
-
0029369313
-
Fractional fourier domains
-
H. M. Ozaktas and O. Aytiir, “Fractional Fourier domains,” Signal Process. 46, 119–124 (1995).
-
(1995)
Signal Process
, vol.46
, pp. 119-124
-
-
Ozaktas, H.M.1
Aytiir, O.2
-
28
-
-
84894388881
-
Two-dimensional fractional fourier transformation and its optical implementation
-
Bilkent University, Ankara, Turkey
-
A. Sahin, “Two-dimensional fractional Fourier transformation and its optical implementation,” Master’s thesis (Bilkent University, Ankara, Turkey, 1996).
-
(1996)
Master’s Thesis
-
-
Sahin, A.1
-
29
-
-
0031104438
-
Design of dynamically adjustable anamorphic fractional fourier transformer
-
M. F. Erden, H. M. Ozaktas, and A. Sahin, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
-
(1997)
Opt. Commun
, vol.136
, pp. 52-60
-
-
Erden, M.F.1
Ozaktas, H.M.2
Sahin, A.3
-
32
-
-
0003474751
-
-
Cambridge U. Press, Cambridge
-
W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Wetterling, Numerical Recipes in Pascal (Cambridge U. Press, Cambridge, 1989), pp. 574–579.
-
(1989)
Numerical Recipes in Pascal
, pp. 574-579
-
-
Press, W.H.1
Flannery, B.P.2
Teukolsky, S.A.3
Wetterling, W.T.4
-
33
-
-
0016958944
-
Diffraction-limited atmospheric imaging of extended objects
-
J. H. Shapiro, “Diffraction-limited atmospheric imaging of extended objects,” J. Opt. Soc. Am. 66, 469–477 (1976).
-
(1976)
J. Opt. Soc. Am
, vol.66
, pp. 469-477
-
-
Shapiro, J.H.1
-
34
-
-
0027308049
-
The mean field theory in em procedures for blind markov random field image restoration
-
J. Zhang, “The mean field theory in EM procedures for blind Markov random field image restoration,” IEEE Trans. Image Process. 2, 27–40 (1993).
-
(1993)
IEEE Trans. Image Process
, vol.2
, pp. 27-40
-
-
Zhang, J.1
-
35
-
-
0030126684
-
Spatially adaptive wavelet-based multiscale image restoration
-
M. R. Banham and A. K. Katsaggelos, “Spatially adaptive wavelet-based multiscale image restoration,” IEEE Trans. Image Process. 5, 619–634 (1996).
-
(1996)
IEEE Trans. Image Process
, vol.5
, pp. 619-634
-
-
Banham, M.R.1
Katsaggelos, A.K.2
|