-
1
-
-
0027802035
-
Scale-sensitive dimensions, uniform convergence, and learnability
-
IEEE Press, Los Alamitos, CA
-
N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler, Scale-sensitive dimensions, uniform convergence, and learnability, in "Proceedings of the 1993 IEEE Symposium on Foundations of Computer Science," IEEE Press, Los Alamitos, CA, 1993.
-
(1993)
Proceedings of the 1993 IEEE Symposium on Foundations of Computer Science
-
-
Alon, N.1
Ben-David, S.2
Cesa-Bianchi, N.3
Haussler, D.4
-
3
-
-
84967907292
-
The learnability of formal concepts
-
M. Anthony, N. Biggs, and J. Shawe-Taylor, The learnability of formal concepts, in "Proceedings of the Third Annual Workshop on Computational Learning Theory," pp. 246-257, 1990.
-
(1990)
Proceedings of the Third Annual Workshop on Computational Learning Theory
, pp. 246-257
-
-
Anthony, M.1
Biggs, N.2
Shawe-Taylor, J.3
-
4
-
-
0030165580
-
Fat-shattering and the learnability of real-valued functions
-
P. L. Bartlett, P. M. Long, and R. C. Williamson, Fat-shattering and the learnability of real-valued functions, J. Comput. System Sci. 52 (1996), 434-452.
-
(1996)
J. Comput. System Sci.
, vol.52
, pp. 434-452
-
-
Bartlett, P.L.1
Long, P.M.2
Williamson, R.C.3
-
5
-
-
0026414013
-
Learnability with respect to fixed distributions
-
G. M. Benedek and A. Itai, Learnability with respect to fixed distributions, Theoret. Comput. Sci. 86 (1991), 377-389.
-
(1991)
Theoret. Comput. Sci.
, vol.86
, pp. 377-389
-
-
Benedek, G.M.1
Itai, A.2
-
6
-
-
0024750852
-
Learnability and the Vapnik-Chervonenkis dimension
-
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach. 36 (1989), 929-965.
-
(1989)
J. Assoc. Comput. Mach.
, vol.36
, pp. 929-965
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
7
-
-
0026962973
-
Learning stochastic functions by smooth simultaneous estimation
-
Assoc. Comput. Mach., New York
-
K. L. Buescher and P. R. Kumar, Learning stochastic functions by smooth simultaneous estimation, in "Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory," pp. 272-279, Assoc. Comput. Mach., New York, 1992.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
, pp. 272-279
-
-
Buescher, K.L.1
Kumar, P.R.2
-
8
-
-
0024739191
-
A general lower bound on the number of examples needed for learning
-
A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant, A general lower bound on the number of examples needed for learning, Inform. Comput. 82 (1989), 247-261.
-
(1989)
Inform. Comput.
, vol.82
, pp. 247-261
-
-
Ehrenfeucht, A.1
Haussler, D.2
Kearns, M.3
Valiant, L.4
-
10
-
-
0002192516
-
Decision theoretic generalizations of the PAC model for neural net and other learning applications
-
D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other learning applications, Inform. Comput. 100 (1992), 78-150.
-
(1992)
Inform. Comput.
, vol.100
, pp. 78-150
-
-
Haussler, D.1
-
11
-
-
0000996139
-
Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension
-
D. Haussler, Sphere packing numbers for subsets of the boolean n-cube with bounded Vapnik-Chervonenkis dimension, J. Combin. Theory Ser. A 69 (1995), 217-232.
-
(1995)
J. Combin. Theory Ser. A
, vol.69
, pp. 217-232
-
-
Haussler, D.1
-
12
-
-
0026371910
-
Equivalence of models for polynomial learnability
-
D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth, Equivalence of models for polynomial learnability, Inform. Comput. 95 (1991), 129-161.
-
(1991)
Inform. Comput.
, vol.95
, pp. 129-161
-
-
Haussler, D.1
Kearns, M.2
Littlestone, N.3
Warmuth, M.K.4
-
13
-
-
43949159818
-
Predicting {0, 1}-functions on randomly drawn points
-
D. Haussler, N. Littlestone, and M. K. Warmuth, Predicting {0, 1}-functions on randomly drawn points, Inform. Comput. 115 (1994), 129-161.
-
(1994)
Inform. Comput.
, vol.115
, pp. 129-161
-
-
Haussler, D.1
Littlestone, N.2
Warmuth, M.K.3
-
14
-
-
0028460231
-
Efficient distribution-free learning of probabilistic concepts
-
M. J. Kearns and R. E. Schapire, Efficient distribution-free learning of probabilistic concepts, J. Comput. System Sci. 48 (1994), 464-497.
-
(1994)
J. Comput. System Sci.
, vol.48
, pp. 464-497
-
-
Kearns, M.J.1
Schapire, R.E.2
-
15
-
-
0001553979
-
Toward efficient agnostic learning
-
M. J. Kearns, R. E. Schapire, and L. M. Sellie, Toward efficient agnostic learning, Mach. Learning 17 (1994), 115-141.
-
(1994)
Mach. Learning
, vol.17
, pp. 115-141
-
-
Kearns, M.J.1
Schapire, R.E.2
Sellie, L.M.3
-
18
-
-
0346624178
-
Bounds on the number of examples needed for learning functions
-
Oxford Univ. Press, Oxford, UK
-
H. U. Simon, Bounds on the number of examples needed for learning functions, in "Computational Learning Theory: EUROCOLT '93," Oxford Univ. Press, Oxford, UK, 1994.
-
(1994)
Computational Learning Theory: EUROCOLT '93
-
-
Simon, H.U.1
|