-
1
-
-
0001775978
-
On decomposability of nambu-poisson tensor
-
[1] D. Alexeevsky and Guha, On decomposability of nambu-poisson tensor, Acta Math. Univ. Comenian. 65 (1996) 1-9.
-
(1996)
Acta Math. Univ. Comenian.
, vol.65
, pp. 1-9
-
-
Alexeevsky, D.1
Guha2
-
2
-
-
0003089719
-
Extensions of the poisson bracket to differential forms and multivector fields
-
[2] A. Cabras and A.M. Vinogradov, Extensions of the Poisson bracket to differential forms and multivector fields, J. Geom. Phys. 9 (1992) 75-100.
-
(1992)
J. Geom. Phys.
, vol.9
, pp. 75-100
-
-
Cabras, A.1
Vinogradov, A.M.2
-
3
-
-
21844491246
-
The geometry of poisson manifolds and Lie algebras
-
[3] J.F. Cariñena, L.A. Ibort, G. Marmo and A. Perelomov, The geometry of Poisson manifolds and Lie algebras, J. Phys. A 27 (1994) 7425.
-
(1994)
J. Phys. A
, vol.27
, pp. 7425
-
-
Cariñena, J.F.1
Ibort, L.A.2
Marmo, G.3
Perelomov, A.4
-
4
-
-
0010068413
-
The Feynman problem and the inverse problem for poisson dynamics
-
[4] J.F. Cariñena, L.A. Ibort, G. Marmo and A. Stern. The Feynman problem and the inverse problem for Poisson dynamics, Phys. Rep. 263 (1995).
-
(1995)
Phys. Rep.
, vol.263
-
-
Cariñena, J.F.1
Ibort, L.A.2
Marmo, G.3
Stern, A.4
-
5
-
-
0010131961
-
-
preprint IFUSA, Salerno, unpublished
-
[5] S. De Filippo, G. Marmo, M. Salerno and G. Vilasi, On the phase manifold geometry of integrable nonlinear field theory, preprint IFUSA, Salerno (1982), unpublished.
-
(1982)
On the Phase Manifold Geometry of Integrable Nonlinear Field Theory
-
-
De Filippo, S.1
Marmo, G.2
Salerno, M.3
Vilasi, G.4
-
6
-
-
51649166879
-
A new characterization of completely integrable systems
-
[6] S. De Filippo, G. Marmo, M. Salerno and G. Vilasi, A new characterization of completely integrable systems, II Nuovo Cimento B 83 (1984) 97.
-
(1984)
II Nuovo Cimento B
, vol.83
, pp. 97
-
-
De Filippo, S.1
Marmo, G.2
Salerno, M.3
Vilasi, G.4
-
7
-
-
0000138835
-
n-Lie algebras
-
[7] V.T. Filippov, n-Lie algebras, Sibirsk. Math. Zh. 26 (6) (1985) 126.
-
(1985)
Sibirsk. Math. Zh.
, vol.26
, Issue.6
, pp. 126
-
-
Filippov, V.T.1
-
8
-
-
0000793354
-
Theory of vector valued differential forms I
-
[8] A. Frolicher and A. Nijenhuis, Theory of vector valued differential forms I, Indag. Math. A 23 (1956) 338.
-
(1956)
Indag. Math. A
, vol.23
, pp. 338
-
-
Frolicher, A.1
Nijenhuis, A.2
-
9
-
-
0000521228
-
Les algèbres k-aires et leur opèrades
-
Sèrie
-
[9] A.V. Gnedbaye, Les algèbres k-aires et leur opèrades, C.R. Acad. Sci. Paris, Sèrie I (1995) 321.
-
(1995)
C.R. Acad. Sci. Paris, Sèrie I
, vol.1
, pp. 321
-
-
Gnedbaye, A.V.1
-
10
-
-
0001847386
-
Abstract Jacobi and poisson structures. Quantization and star-products
-
[10] J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geom. Phys. 9 (1992) 45-73.
-
(1992)
J. Geom. Phys.
, vol.9
, pp. 45-73
-
-
Grabowski, J.1
-
11
-
-
0002075063
-
Local Lie algebras
-
[11] A.A. Kirillov, Local Lie Algebras, Usptkhi Mat. Nauk 31 (4) (1976) 57-76; Russian Math. Surveys 31 (4) (1976) 55-76.
-
(1976)
Usptkhi Mat. Nauk
, vol.31
, Issue.4
, pp. 57-76
-
-
Kirillov, A.A.1
-
12
-
-
0002075063
-
-
[11] A.A. Kirillov, Local Lie Algebras, Usptkhi Mat. Nauk 31 (4) (1976) 57-76; Russian Math. Surveys 31 (4) (1976) 55-76.
-
(1976)
Russian Math. Surveys
, vol.31
, Issue.4
, pp. 55-76
-
-
-
14
-
-
36449003784
-
Recursion operators: Meaning and existence
-
[13] G. Landi, G. Marmo and G. Vilasi, Recursion operators: Meaning and existence, J. Math. Phys. 35 (2) (1994) 808.
-
(1994)
J. Math. Phys.
, vol.35
, Issue.2
, pp. 808
-
-
Landi, G.1
Marmo, G.2
Vilasi, G.3
-
17
-
-
0000654815
-
A local classification of non-linear first order partial differential equations
-
[16] V.V. Lychagin, A local classification of non-linear first order partial differential equations, Usptkhi Mat. Nauk 30 (1) (1975) 101-171; Russian Math. Surveys 30 (1) (1975) 105-175.
-
(1975)
Usptkhi Mat. Nauk
, vol.30
, Issue.1
, pp. 101-171
-
-
Lychagin, V.V.1
-
18
-
-
84957140970
-
-
[16] V.V. Lychagin, A local classification of non-linear first order partial differential equations, Usptkhi Mat. Nauk 30 (1) (1975) 101-171; Russian Math. Surveys 30 (1) (1975) 105-175.
-
(1975)
Russian Math. Surveys
, vol.30
, Issue.1
, pp. 105-175
-
-
-
19
-
-
36749117832
-
A simple model of integrable Hamiltonian equation
-
[17] F. Magri, A simple model of integrable Hamiltonian equation, J. Math. Phys. 19 (1978) 1156.
-
(1978)
J. Math. Phys.
, vol.19
, pp. 1156
-
-
Magri, F.1
-
20
-
-
0000247924
-
A geometrical approach to the nonlinear solvable equations
-
[18] F. Magri, A Geometrical approach to the nonlinear solvable equations, Lecture Notes in Phys. 120 (1980) 233.
-
(1980)
Lecture Notes in Phys.
, vol.120
, pp. 233
-
-
Magri, F.1
-
21
-
-
0010176153
-
n-ary Lie and associative algebras
-
ESI preprint (1996); Vietri sul Mare, October, to appear
-
[19] P. Michor and A.M. Vinogradov, n-ary Lie and associative algebras, ESI preprint (1996); in: Proc. Conf. Geometry and Physics (Vietri sul Mare, October 1996), to appear.
-
(1996)
Proc. Conf. Geometry and Physics
-
-
Michor, P.1
Vinogradov, A.M.2
-
22
-
-
35949035760
-
Generalized Hamiltonian mechanics
-
[20] Y. Nambu, Generalized Hamiltonian mechanics. Phys. Rev. D 7 (1973) 2405.
-
(1973)
Phys. Rev. D
, vol.7
, pp. 2405
-
-
Nambu, Y.1
-
23
-
-
0010181245
-
Trace-free differential invariants of triples of vector 1-forms
-
[21] A. Nijenhuis, Trace-free differential invariants of triples of vector 1-forms Indag. Math. A 49 (1987) 2.
-
(1987)
Indag. Math. A
, vol.49
, pp. 2
-
-
Nijenhuis, A.1
-
25
-
-
21344477372
-
On foundation of generalized Nambu mechanics
-
[23] L.A. Takhtajan, On foundation of generalized Nambu mechanics, Comm. Math. Phys. 160 (1994) 295.
-
(1994)
Comm. Math. Phys.
, vol.160
, pp. 295
-
-
Takhtajan, L.A.1
-
26
-
-
0010181246
-
The logic algebra for the theory of linear differential operators
-
[24] A.M. Vinogradov The logic algebra for the theory of linear differential operators, Soviet Math. Dokl. 13 (1972) 1058-1062.
-
(1972)
Soviet Math. Dokl.
, vol.13
, pp. 1058-1062
-
-
Vinogradov, A.M.1
-
27
-
-
0021413922
-
The C spectral sequence, Lagrangian formalism and conservation laws: I the linear theory: II the non-linear theory
-
[25] A.M. Vinogradov, The C spectral sequence, Lagrangian formalism and conservation laws: I The linear theory: II The non-linear theory, J. Math. Anal. Appl. 100 (1984) 1-40, 41-129.
-
(1984)
J. Math. Anal. Appl.
, vol.100
, pp. 1-40
-
-
Vinogradov, A.M.1
|