메뉴 건너뛰기




Volumn 6, Issue 3, 1998, Pages 333-344

Neural identification applied to predictive control of a solar plant

Author keywords

neural networks; non linear identification; predictive control; solar power plants

Indexed keywords

GENERALIZED PREDICTIVE CONTROLLER (GPC) STRUCTURE;

EID: 0032029987     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0967-0661(98)00025-2     Document Type: Article
Times cited : (49)

References (34)
  • 3
    • 84983146224 scopus 로고    scopus 로고
    • Nonlinear neural model-based predictive control of a solar plant
    • (264). I2
    • Arahal, M.R., Berenguel, M., Camacho, E.F., 1997. Nonlinear neural model-based predictive control of a solar plant. In: Proc. of the ECC'97, pp. TH-E I2 (264).
    • (1997) In: Proc. of the ECC'97
    • Arahal, M.R.1    Berenguel, M.2    Camacho, E.F.3
  • 8
    • 0028418906 scopus 로고
    • Application of a Gain Scheduling Generalized Predictive Controller to a Solar Power Plant
    • Camacho E.F., Berenguel M., Rubio F.R. Application of a Gain Scheduling Generalized Predictive Controller to a Solar Power Plant. Control Engineering Practice. 2(2):1994;227-238.
    • (1994) Control Engineering Practice , vol.2 , Issue.2 , pp. 227-238
    • Camacho, E.F.1    Berenguel, M.2    Rubio, F.R.3
  • 10
    • 0025669403 scopus 로고
    • Practical identification of narmax models using radial basis functions
    • Chen S., Billings S.A., Cowan C.F.N., Grant P.M. Practical identification of narmax models using radial basis functions. Int. J. Control. 52:1990;1327-1350.
    • (1990) Int. J. Control , vol.52 , pp. 1327-1350
    • Chen, S.1    Billings, S.A.2    Cowan, C.F.N.3    Grant, P.M.4
  • 12
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems. 2:1989;303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 17
  • 18
    • 0000350536 scopus 로고
    • State-space modeling using operating regime decomposition and local models
    • Sydney, Australia
    • Johansen, T.A., Foss, B.A., 1993. State-space modeling using operating regime decomposition and local models. In: Proc. of the 12th IFAC World Congress, Sydney, Australia 1, 431-434.
    • (1993) In: Proc. of the 12th IFAC World Congress , vol.1 , pp. 431-434
    • Johansen, T.A.1    Foss, B.A.2
  • 21
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J., Darken C. Fast learning in networks of locally-tuned processing units. Neural Computation. 1:1989;281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 25
    • 0004030839 scopus 로고
    • Cambridge, Massachusetts: Technical report. Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT)
    • Poggio, Tomaso Federico Girosi A theory of networks for approximation and learning. 1989;Technical report. Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts.
    • (1989) A Theory of Networks for Approximation and Learning
    • Poggio1    Tomaso Federico Girosi2
  • 26
    • 0029191059 scopus 로고
    • Determining the model order of nonlinear input/output systems directly from data
    • Seattle, WA: American Automatic Control Council
    • Rhodes C., Morari M. Determining the model order of nonlinear input/output systems directly from data. Proc. American Control Conference. 1995;2190-2195 American Automatic Control Council, Seattle, WA.
    • (1995) Proc. American Control Conference , pp. 2190-2195
    • Rhodes, C.1    Morari, M.2
  • 27
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • San Francisco, CA
    • Riedmiller, Martin, Heinrich Braun, 1993. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proc. of the IEEE Intl. Conf. on Neural Networks. San Francisco, CA, pp. 586-591.
    • (1993) In: Proc. of the IEEE Intl. Conf. on Neural Networks , pp. 586-591
    • Riedmiller, M.1    Heinrich, B.2
  • 28
    • 0026954302 scopus 로고
    • Gaussian networks for direct adaptive control
    • Sanner R.M., Slotine J.-J.E. Gaussian networks for direct adaptive control. Neural Networks. 3(6):1992;837-863.
    • (1992) Neural Networks , vol.3 , Issue.6 , pp. 837-863
    • Sanner, R.M.1    Slotine, J.-J.E.2
  • 33
    • 0344930191 scopus 로고
    • Nonlinear system identification by the combination of self-organizing feature map and radial basis function network
    • Tanaka, M., 1995. Nonlinear system identification by the combination of self-organizing feature map and radial basis function network. In: 3rd European Control Conf., pp. 1580-1585.
    • (1995) In: 3rd European Control Conf. , pp. 1580-1585
    • Tanaka, M.1
  • 34
    • 0000517353 scopus 로고
    • Improving the performance of radial basis function networks by learning center locations
    • Touretzky D.S. San Mateo: Morgan Kaufmann
    • Wettschereck D., Dietterich T. Improving the performance of radial basis function networks by learning center locations. Touretzky D.S. Advances in Neural Information Processing Systems. 4:1992;1133-1140 Morgan Kaufmann, San Mateo.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 1133-1140
    • Wettschereck, D.1    Dietterich, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.