-
1
-
-
0003781076
-
-
Clarendon, Oxford, Chapter XII
-
For a more detailed discussion of thermoelectric effects in anisotropic materials, see J. F. Nye, in Physical Properties of Crystals (Clarendon, Oxford, 1985) Chapter XII, and C. A. Domenicali, Phys. Rev. 92, 877 (1953). For references to recent experimental observations, see L. R. Testardi, Appl. Phys. Lett. 64, 2347 (1994). A fuller account of the advantages of anisotropic thermoelectricity in device applications will be given in a future publication by L. R. Testardi.
-
(1985)
Physical Properties of Crystals
-
-
Nye, J.F.1
-
2
-
-
0344638304
-
-
For a more detailed discussion of thermoelectric effects in anisotropic materials, see J. F. Nye, in Physical Properties of Crystals (Clarendon, Oxford, 1985) Chapter XII, and C. A. Domenicali, Phys. Rev. 92, 877 (1953). For references to recent experimental observations, see L. R. Testardi, Appl. Phys. Lett. 64, 2347 (1994). A fuller account of the advantages of anisotropic thermoelectricity in device applications will be given in a future publication by L. R. Testardi.
-
(1953)
Phys. Rev.
, vol.92
, pp. 877
-
-
Domenicali, C.A.1
-
3
-
-
51149203115
-
-
For a more detailed discussion of thermoelectric effects in anisotropic materials, see J. F. Nye, in Physical Properties of Crystals (Clarendon, Oxford, 1985) Chapter XII, and C. A. Domenicali, Phys. Rev. 92, 877 (1953). For references to recent experimental observations, see L. R. Testardi, Appl. Phys. Lett. 64, 2347 (1994). A fuller account of the advantages of anisotropic thermoelectricity in device applications will be given in a future publication by L. R. Testardi.
-
(1994)
Appl. Phys. Lett.
, vol.64
, pp. 2347
-
-
Testardi, L.R.1
-
4
-
-
0004136614
-
-
Chap. 11 by R. W. Ure and R. R. Heikes (Interscience, New York) Chap. 11
-
See, for example, Thermoelectricity: Science and Engineering, edited by R. Heikes and R. Ure, Chap. 11 by R. W. Ure and R. R. Heikes (Interscience, New York, 1961), Chap. 11.
-
(1961)
Thermoelectricity: Science and Engineering
-
-
Heikes, R.1
Ure, R.2
-
5
-
-
0003980328
-
-
Chap. 5 by C. M. Bhandari and D. M. Rowe for band structure calculations of the thermoelectric parameters, and Chap. 32 by A. T. Burkov and M. V. Vedernikov for the absolute Seebeck coefficients of the elements (CRC, Boca Raton)
-
See, for example, CRC Handbook of Thermoelectrics, edited by D. M. Rowe, Chap. 5 by C. M. Bhandari and D. M. Rowe for band structure calculations of the thermoelectric parameters, and Chap. 32 by A. T. Burkov and M. V. Vedernikov for the absolute Seebeck coefficients of the elements (CRC, Boca Raton, 1995).
-
(1995)
CRC Handbook of Thermoelectrics
-
-
Rowe, D.M.1
-
6
-
-
0003552279
-
-
Chap. 34 by R. S. Kohlman, J. Joo, and A. J. Epstein for electrical properties of conducting polymers, and Chap. 10 by Y. Yang for thermal conductivities of polymers, AIP, New York
-
See, for example, Physical Properties of Polymers Handbook, edited by J. Mark, Chap. 34 by R. S. Kohlman, J. Joo, and A. J. Epstein for electrical properties of conducting polymers, and Chap. 10 by Y. Yang for thermal conductivities of polymers, (AIP, New York, 1996).
-
(1996)
Physical Properties of Polymers Handbook
-
-
Mark, J.1
-
7
-
-
24844453270
-
-
For references and analysis of prior studies of the Seebeck coefficient and electric conductivity in conducting polymers, see A. B. Kaiser, Phys. Rev. B 40, 2806 (1989). In the present article we use the findings of J. R. Reynolds, J. B. Schlenoff, and C. W. Chien, J. Electrochem. Soc. 132, 1131 (1985).
-
(1989)
Phys. Rev. B
, vol.40
, pp. 2806
-
-
Kaiser, A.B.1
-
8
-
-
0022060187
-
-
For references and analysis of prior studies of the Seebeck coefficient and electric conductivity in conducting polymers, see A. B. Kaiser, Phys. Rev. B 40, 2806 (1989). In the present article we use the findings of J. R. Reynolds, J. B. Schlenoff, and C. W. Chien, J. Electrochem. Soc. 132, 1131 (1985).
-
(1985)
J. Electrochem. Soc.
, vol.132
, pp. 1131
-
-
Reynolds, J.R.1
Schlenoff, J.B.2
Chien, C.W.3
-
9
-
-
0029771312
-
-
P. L. Adams, J. Laughlin, and A. P. Monkman, Synth. Met. 76, 157 (1996); A. P. Monkman, P. N. Adams, P. J. Laughlin, and E. R. Holland, ibid. 69, 183 (1995).
-
(1996)
Synth. Met.
, vol.76
, pp. 157
-
-
Adams, P.L.1
Laughlin, J.2
Monkman, A.P.3
-
10
-
-
0029277662
-
-
P. L. Adams, J. Laughlin, and A. P. Monkman, Synth. Met. 76, 157 (1996); A. P. Monkman, P. N. Adams, P. J. Laughlin, and E. R. Holland, ibid. 69, 183 (1995).
-
(1995)
Synth. Met.
, vol.69
, pp. 183
-
-
Monkman, A.P.1
Adams, P.N.2
Laughlin, P.J.3
Holland, E.R.4
-
11
-
-
0002387572
-
-
edited by L. Alcacer (Reidel, Dordrecht, Netherlands)
-
A. G. MacDiarmid, J. C. Chiang, A. F. Richter, N. L. D. Somasiri, and A. J. Epstein, in Conducting Polymers, edited by L. Alcacer (Reidel, Dordrecht, Netherlands, 1987), p. 105.
-
(1987)
Conducting Polymers
, pp. 105
-
-
MacDiarmid, A.G.1
Chiang, J.C.2
Richter, A.F.3
Somasiri, N.L.D.4
Epstein, A.J.5
-
12
-
-
85034303750
-
-
note
-
5 behavior for polyacetylene corresponds more nearly to a mean free path=0.6Å/(m*/m). The effective mass ratio (m*/m) used for Fig. 8 and in its following text is a combination of inertial and density of states effective masses for ellipsoidal Fermi surfaces, a detail not warranting elaboration in the present case. However, if the volume density of the conducting states is small compared to the mean atomic density, then it is well to point out that one would expect (m*/m) to be < 1, leading to a correspondingly larger calculated mean free path.
-
-
-
-
13
-
-
0029545485
-
-
C. O. Yoon, M. Reghu, D. Moses, A. J. Heeger, Y. Cao, T-A Chen, X. Wu, and R. D. Rieke, Synth. Met. 75, 229 (1995).
-
(1995)
Synth. Met.
, vol.75
, pp. 229
-
-
Yoon, C.O.1
Reghu, M.2
Moses, D.3
Heeger, A.J.4
Cao, Y.5
Chen, T.-A.6
Wu, X.7
Rieke, R.D.8
-
14
-
-
85034291419
-
-
note
-
2/3 from the nondegenerate to the degenerate doping range when the mean free path is constant (a case also called acoustic mode scattering). This variation is not accounted for above, nor do we pursue calculations of the more general expression for κ[Eq.(5)]. Such detail is unwarranted without a better understanding of the empirical σ vs S correlation, since the unexpected values for β may imply new thermal conduction routes with undetermined values of C (see footnote 13 below). We therefore choose to assume a constant total thermal conductivity in what follows.
-
-
-
-
16
-
-
0003421806
-
-
Springer, Berlin
-
See, for example, B. I. Shlkovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1979). Thermal generation of current carrying pairs would also contribute to the temperature dependence of the electrical conductivity, a much studied behavior in conducting polymers.
-
(1979)
Electronic Properties of Doped Semiconductors
-
-
Shlkovskii, B.I.1
Efros, A.L.2
-
17
-
-
85034299152
-
-
note
-
g/kT) with ambipolar conduction, thus leading to a reduced ZT. No test of this, or estimate of the enhanced C, can be made from only our measurements of σ and S at 300 K.
-
-
-
|