-
2
-
-
0017386947
-
Dynamics of a chemostat in which two organisms compete for a common substrate
-
Aris R., Humphrey A.E. Dynamics of a chemostat in which two organisms compete for a common substrate. Biotechnol. Bioeng. 19:1977;1375.
-
(1977)
Biotechnol. Bioeng.
, vol.19
, pp. 1375
-
-
Aris, R.1
Humphrey, A.E.2
-
3
-
-
0022012911
-
A mathematical model of the chemostat with a general class of functions describing nutrient uptake
-
Butler G.J., Wolkowicz G.S.K. A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J. Appl. Math. 45:1985;138.
-
(1985)
SIAM J. Appl. Math.
, vol.45
, pp. 138
-
-
Butler, G.J.1
Wolkowicz, G.S.K.2
-
4
-
-
0000468175
-
Limiting behavior for competing species
-
Hsu S.B. Limiting behavior for competing species. SIAM J. Appl. Math. 34:1978;760.
-
(1978)
SIAM J. Appl. Math.
, vol.34
, pp. 760
-
-
Hsu, S.B.1
-
5
-
-
0000875842
-
A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms
-
Hsu S.B., Hubbell S., Waltman P. A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math. 32:1977;366.
-
(1977)
SIAM J. Appl. Math.
, vol.32
, pp. 366
-
-
Hsu, S.B.1
Hubbell, S.2
Waltman, P.3
-
6
-
-
0000775549
-
Criteria for the growth of contaminants and mutants in continuous culture
-
Powell E.O. Criteria for the growth of contaminants and mutants in continuous culture. J. Gen. Microbial. 18:1958;259.
-
(1958)
J. Gen. Microbial.
, vol.18
, pp. 259
-
-
Powell, E.O.1
-
7
-
-
0026818163
-
Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates
-
Wolkowicz G.S.K., Zhiqi L. Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52:1992;222.
-
(1992)
SIAM J. Appl. Math.
, vol.52
, pp. 222
-
-
Wolkowicz, G.S.K.1
Zhiqi, L.2
-
8
-
-
0018868854
-
Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes
-
Hansen S.R., Hubbell S.P. Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science. 207:1980;1491.
-
(1980)
Science
, vol.207
, pp. 1491
-
-
Hansen, S.R.1
Hubbell, S.P.2
-
10
-
-
0014162576
-
Enrichments of aquatic bacteria in continuous culture
-
Jannasch H.W. Enrichments of aquatic bacteria in continuous culture. Arch. Mikrobiol. 59:1967;165.
-
(1967)
Arch. Mikrobiol.
, vol.59
, pp. 165
-
-
Jannasch, H.W.1
-
11
-
-
0015583054
-
Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium
-
Jost J.L., Drake J.F., Fredrickson A.G., Tsuchiya H.M. Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J. Bacteriol. 113:1973;834.
-
(1973)
J. Bacteriol.
, vol.113
, pp. 834
-
-
Jost, J.L.1
Drake, J.F.2
Fredrickson, A.G.3
Tsuchiya, H.M.4
-
12
-
-
0015103335
-
Effect of dilution rate on the outcome of chemostat mixed culture experiments
-
Meers J.L. Effect of dilution rate on the outcome of chemostat mixed culture experiments. J. Gen. Microbiol. 67:1971;359.
-
(1971)
J. Gen. Microbiol.
, vol.67
, pp. 359
-
-
Meers, J.L.1
-
13
-
-
0023891906
-
Structural instability of the theory of simple competition
-
Powell G.E. Structural instability of the theory of simple competition. J. Theor. Biol. 132:1988;421.
-
(1988)
J. Theor. Biol.
, vol.132
, pp. 421
-
-
Powell, G.E.1
-
14
-
-
0018500981
-
A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor
-
Stephanopoulos G., Aris R., Fredrickson A.G. A stochastic analysis of the growth of competing microbial populations in a continuous biochemical reactor. Math. Biosci. 45:1979;99.
-
(1979)
Math. Biosci.
, vol.45
, pp. 99
-
-
Stephanopoulos, G.1
Aris, R.2
Fredrickson, A.G.3
-
15
-
-
0028165836
-
Periodic, quasi-periodic, and chaotic coexistence of two competing microbial population in a periodically operated chemostat
-
Lenas P., Pavlou S. Periodic, quasi-periodic, and chaotic coexistence of two competing microbial population in a periodically operated chemostat. Math. Biosci. 121:1994;61.
-
(1994)
Math. Biosci.
, vol.121
, pp. 61
-
-
Lenas, P.1
Pavlou, S.2
-
16
-
-
38249004146
-
A nonlinear boundary value problem arising from competition in the chemostat
-
So J.W.-H., Waltman P. A nonlinear boundary value problem arising from competition in the chemostat. Appl. Math. Comput. 32:1989;169.
-
(1989)
Appl. Math. Comput.
, vol.32
, pp. 169
-
-
So, J.W.-H.1
Waltman, P.2
-
17
-
-
0020841669
-
Competition of two microbial populations for a single resource in a chemostat when one of them exhibits wall attachment
-
Baltzis B.C., Fredrickson A.G. Competition of two microbial populations for a single resource in a chemostat when one of them exhibits wall attachment. Biotechnol. Bioeng. 25:1983;2419.
-
(1983)
Biotechnol. Bioeng.
, vol.25
, pp. 2419
-
-
Baltzis, B.C.1
Fredrickson, A.G.2
-
18
-
-
0026707308
-
The growth of pure and simple microbial competitors in a moving distributed medium
-
Kung C.-M., Baltzis B.C. The growth of pure and simple microbial competitors in a moving distributed medium. Math. Biosci. 111:1992;295.
-
(1992)
Math. Biosci.
, vol.111
, pp. 295
-
-
Kung, C.-M.1
Baltzis, B.C.2
-
19
-
-
0019853576
-
The gradostat: A bidirectional compound chemostat and its application in microbiological research
-
Lovitt R.W., Wimpenny J.W.T. The gradostat: a bidirectional compound chemostat and its application in microbiological research. J. Gen. Microbiol. 127:1981;261.
-
(1981)
J. Gen. Microbiol.
, vol.127
, pp. 261
-
-
Lovitt, R.W.1
Wimpenny, J.W.T.2
-
20
-
-
0028160669
-
Microbial predation in coupled chemostats: A global study of two coupled nonlinear oscillators
-
Taylor M.A., Pavlou S., Kevrekidis I.G. Microbial predation in coupled chemostats: a global study of two coupled nonlinear oscillators. Math. Biosci. 122:1994;25.
-
(1994)
Math. Biosci.
, vol.122
, pp. 25
-
-
Taylor, M.A.1
Pavlou, S.2
Kevrekidis, I.G.3
-
23
-
-
0023533666
-
Operating parameters' effects on the outcome of pure and simple competition between two populations in configurations of two interconnected chemostats
-
Kung C.-M., Baltzis B.C. Operating parameters' effects on the outcome of pure and simple competition between two populations in configurations of two interconnected chemostats. Biotechnol. Bioeng. 30:1987;1006.
-
(1987)
Biotechnol. Bioeng.
, vol.30
, pp. 1006
-
-
Kung, C.-M.1
Baltzis, B.C.2
-
24
-
-
0010506287
-
Competition in the gradostat: The role of the communication rate
-
Smith H., Tang B. Competition in the gradostat: the role of the communication rate. J. Math. Biol. 27:1989;139.
-
(1989)
J. Math. Biol.
, vol.27
, pp. 139
-
-
Smith, H.1
Tang, B.2
-
25
-
-
51249178956
-
The gradostat: A model of competition along a nutrient gradient
-
Smith H.L., Waltman P. The gradostat: a model of competition along a nutrient gradient. Microb. Ecol. 22:1991;207.
-
(1991)
Microb. Ecol.
, vol.22
, pp. 207
-
-
Smith, H.L.1
Waltman, P.2
-
26
-
-
0000883166
-
Effect of spatial inhomogeneities on the coexistence of competing microbial populations
-
Stephanopoulos G., Fredrickson A.G. Effect of spatial inhomogeneities on the coexistence of competing microbial populations. Biotechnol. Bioeng. 21:1979;1491.
-
(1979)
Biotechnol. Bioeng.
, vol.21
, pp. 1491
-
-
Stephanopoulos, G.1
Fredrickson, A.G.2
-
27
-
-
0010428950
-
Equilibrium distribution of species among vessels of a gradostat: A singular perturbation approach
-
Smith H.L. Equilibrium distribution of species among vessels of a gradostat: a singular perturbation approach. J. Math. Biol. 30:1991;31.
-
(1991)
J. Math. Biol.
, vol.30
, pp. 31
-
-
Smith, H.L.1
-
29
-
-
0010427768
-
Competition in the gradostat for the case of three vessels and three populations
-
El-Owaidy H., Ammar A.A., El-Leithy O.A. Competition in the gradostat for the case of three vessels and three populations. Tamkang J. Math. 21:1990;143.
-
(1990)
Tamkang J. Math.
, vol.21
, pp. 143
-
-
El-Owaidy, H.1
Ammar, A.A.2
El-Leithy, O.A.3
-
30
-
-
84996102052
-
Impossibility of coexistence of three pure and simple competitors in configurations of three interconnected chemostats
-
Chang S.W., Baltzis B.C. Impossibility of coexistence of three pure and simple competitors in configurations of three interconnected chemostats. Biotechnol. Bioeng. 33:1989;460.
-
(1989)
Biotechnol. Bioeng.
, vol.33
, pp. 460
-
-
Chang, S.W.1
Baltzis, B.C.2
-
31
-
-
0027973371
-
Steady-state coexistence of three pure and simple competitors in a four-membered reactor network
-
Baltzis B.C., Wu M. Steady-state coexistence of three pure and simple competitors in a four-membered reactor network. Math. Biosci. 123:1994;147.
-
(1994)
Math. Biosci.
, vol.123
, pp. 147
-
-
Baltzis, B.C.1
Wu, M.2
-
32
-
-
38249011654
-
Asymptotic behavior of solutions of competition in gradostat with two limiting complementary substrates
-
Zaghrout A.A.S. Asymptotic behavior of solutions of competition in gradostat with two limiting complementary substrates. Appl. Math. Comput. 49:1992;19.
-
(1992)
Appl. Math. Comput.
, vol.49
, pp. 19
-
-
Zaghrout, A.A.S.1
-
35
-
-
84984082223
-
A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates
-
Andrews J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10:1968;707.
-
(1968)
Biotechnol. Bioeng.
, vol.10
, pp. 707
-
-
Andrews, J.F.1
-
36
-
-
0026844216
-
Analysis of a model of two competitors in a chemostat with an external inhibitor
-
Hsu S.B., Waltman P. Analysis of a model of two competitors in a chemostat with an external inhibitor. SIAM J. Appl. Math. 52:1992;528.
-
(1992)
SIAM J. Appl. Math.
, vol.52
, pp. 528
-
-
Hsu, S.B.1
Waltman, P.2
-
37
-
-
0023044240
-
Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics
-
Lenski R.E., Hattingh S. Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics. J. Theor. Biol. 122:1986;83.
-
(1986)
J. Theor. Biol.
, vol.122
, pp. 83
-
-
Lenski, R.E.1
Hattingh, S.2
-
39
-
-
0028990855
-
Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate
-
Lenas P., Pavlou S. Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate. Math. Biosci. 129:1995;111.
-
(1995)
Math. Biosci.
, vol.129
, pp. 111
-
-
Lenas, P.1
Pavlou, S.2
|