메뉴 건너뛰기




Volumn 64, Issue 3, 1998, Pages 333-346

Cross-correlation neural network models for the smallest singular component of general matrix

Author keywords

Cross correlation neural network; Cross coupled Hebb rule; Hebb rule; Singular value decomposition; Stability

Indexed keywords

ASYMPTOTIC STABILITY; CORRELATORS; LEARNING ALGORITHMS; LEARNING SYSTEMS; LYAPUNOV METHODS; MATHEMATICAL MODELS; MATRIX ALGEBRA; NEURAL NETWORKS; PROBLEM SOLVING;

EID: 0032001870     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0165-1684(97)00199-0     Document Type: Article
Times cited : (9)

References (21)
  • 2
    • 0028381175 scopus 로고
    • An on-line unsupervised learning machine for adaptive feature extraction
    • H. Chen, R.-W. Liu, An on-line unsupervised learning machine for adaptive feature extraction, IEEE. Trans. Circuits Systems 41 (2) (1994) 87-98.
    • (1994) IEEE. Trans. Circuits Systems , vol.41 , Issue.2 , pp. 87-98
    • Chen, H.1    Liu, R.-W.2
  • 3
    • 0028540117 scopus 로고
    • Cross-correlation neural networks models
    • K.I. Diamantaras, S.Y. Kung, Cross-correlation neural networks models, IEEE Trans. Signal Process. 42 (11) (1994) 3218-3223.
    • (1994) IEEE Trans. Signal Process. , vol.42 , Issue.11 , pp. 3218-3223
    • Diamantaras, K.I.1    Kung, S.Y.2
  • 4
    • 0000333571 scopus 로고
    • An analysis of the total least squares problem
    • December
    • G.H. Golub, C.F. Van Loan, An analysis of the total least squares problem, SIAM. Numer. Anal. 17 (6) (December 1980) 883-893.
    • (1980) SIAM. Numer. Anal. , vol.17 , Issue.6 , pp. 883-893
    • Golub, G.H.1    Van Loan, C.F.2
  • 6
    • 0026727495 scopus 로고
    • Convergence analysis of local feature extraction algorithms
    • K. Hornik, C.M. Kanan, Convergence analysis of local feature extraction algorithms, Neural Networks 5 (1992) 229-240.
    • (1992) Neural Networks , vol.5 , pp. 229-240
    • Hornik, K.1    Kanan, C.M.2
  • 7
    • 0006905298 scopus 로고
    • Hebbian learning of principal components
    • R. Eckmiller et al. (Eds.), Elsevier, Amsterdam
    • A. Krogh, J. Hertz, Hebbian learning of principal components, in: R. Eckmiller et al. (Eds.), Parallel Processing in Neural Systems and Computers, Elsevier, Amsterdam, 1990, pp. 183-186.
    • (1990) Parallel Processing in Neural Systems and Computers , pp. 183-186
    • Krogh, A.1    Hertz, J.2
  • 11
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • March
    • R. Linsker, Self-organization in a perceptual network, Computer (March 1988) 105-117.
    • (1988) Computer , pp. 105-117
    • Linsker, R.1
  • 12
    • 0017526570 scopus 로고
    • Analysis of recursive stochastic algorithms
    • August
    • L. Ljung, Analysis of recursive stochastic algorithms, IEEE Trans. Automat. Control AC-22 (4) (August 1977) 551-575.
    • (1977) IEEE Trans. Automat. Control , vol.AC-22 , Issue.4 , pp. 551-575
    • Ljung, L.1
  • 13
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, A simplified neuron model as a principal component analyzer, J. Math. Biol. 15 (1982) 267-273.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 14
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • E. Oja, Principal components, minor components, and linear neural networks, Neural Networks 5 (1992) 927-273.
    • (1992) Neural Networks , vol.5 , pp. 927-1273
    • Oja, E.1
  • 15
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvector and eigenvalues of the expectation of a random matrix
    • E. Oja, J. Karhunen, On stochastic approximation of the eigenvector and eigenvalues of the expectation of a random matrix, J. Math. Anal. Appl. 106 (1985) 69-84.
    • (1985) J. Math. Anal. Appl. , vol.106 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 17
    • 84956074083 scopus 로고
    • A self-organizing network for principal component analysis
    • J. Rubner, P. Tavan, A self-organizing network for principal component analysis, Europhys. Lett. 10 (1989) 693-698.
    • (1989) Europhys. Lett. , vol.10 , pp. 693-698
    • Rubner, J.1    Tavan, P.2
  • 18
    • 0002937051 scopus 로고
    • An optimality principle for unsupervised learning
    • D.S. Touretzky (Ed.), Morgan Kaufmann, San Mateo
    • T.D. Sanger, An optimality principle for unsupervised learning, in: D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems, Vol. 1, Morgan Kaufmann, San Mateo, 1989, pp. 11-19.
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 11-19
    • Sanger, T.D.1
  • 19
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T.D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural network, Neural Networks 2 (1989) 459-473.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 20
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • L. Xu, E. Oja, C.Y. Suen, Modified Hebbian learning for curve and surface fitting, Neural Networks 5 (1992) 441-457.
    • (1992) Neural Networks , vol.5 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 21
    • 0024369937 scopus 로고
    • Quadrature and the development of orientation selective cortical cells by Hebb rules
    • A.L. Yuille, D.M. Kammen, D.S. Cohen, Quadrature and the development of orientation selective cortical cells by Hebb rules, Biol. Cybernet. 61 (1989) 183-194.
    • (1989) Biol. Cybernet. , vol.61 , pp. 183-194
    • Yuille, A.L.1    Kammen, D.M.2    Cohen, D.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.