-
1
-
-
3843065814
-
Asymptotic of a solution of contrast-structure type
-
BUTUZOV, V. F. & VASIL'EVA, A. B. 1987 Asymptotic of a solution of contrast-structure type. Math. Notes 42, 956-961.
-
(1987)
Math. Notes
, vol.42
, pp. 956-961
-
-
Butuzov, V.F.1
Vasil'eva, A.B.2
-
2
-
-
3843086432
-
The asymptotic theory of contrasting spatial structures
-
BUTUZOV, V. F. & VASIL'EVA, A. B. 1988 The asymptotic theory of contrasting spatial structures. Comput. Maths. Math. Phys. 28, 26-36.
-
(1988)
Comput. Maths. Math. Phys.
, vol.28
, pp. 26-36
-
-
Butuzov, V.F.1
Vasil'eva, A.B.2
-
3
-
-
0016950595
-
Boundary and interior transition layer phenomena for pairs of second-order differential equations
-
FIFE, P. C. 1976 Boundary and interior transition layer phenomena for pairs of second-order differential equations. J. Math. Anal. Appl. 54, 497-521.
-
(1976)
J. Math. Anal. Appl.
, vol.54
, pp. 497-521
-
-
Fife, P.C.1
-
4
-
-
84972578118
-
A remark on singular perturbation methods
-
ITO, M. 1984 A remark on singular perturbation methods. Hiroshima Math. J. 14, 619-629.
-
(1984)
Hiroshima Math. J.
, vol.14
, pp. 619-629
-
-
Ito, M.1
-
5
-
-
0000364966
-
On spike solutions of singularly perturbed semilinear Dirichlet problems
-
JANG, J. 1994 On spike solutions of singularly perturbed semilinear Dirichlet problems. J. Diff. Eqns 114, 370-395.
-
(1994)
J. Diff. Eqns
, vol.114
, pp. 370-395
-
-
Jang, J.1
-
6
-
-
0022075949
-
Slowly varying phase planes and boundary-layer theory
-
KATH, W. L. 1985 Slowly varying phase planes and boundary-layer theory. Stud. Appl. Math. 72, 221-239.
-
(1985)
Stud. Appl. Math.
, vol.72
, pp. 221-239
-
-
Kath, W.L.1
-
7
-
-
0002025637
-
Semilinear elliptic singular perturbation problems with nonuniform interior behavior
-
KELLEY, W. & KO, B. 1990 Semilinear elliptic singular perturbation problems with nonuniform interior behavior. J. Diff. Eqns 86, 88-101.
-
(1990)
J. Diff. Eqns
, vol.86
, pp. 88-101
-
-
Kelley, W.1
Ko, B.2
-
8
-
-
84990581933
-
On the shape of least-energy solutions to a semilinear Neumann problem
-
Ni, W.-M. & TAKAGI, I. 1991 On the shape of least-energy solutions to a semilinear Neumann problem. Communs Pure Appl. Math. 44, 819-851.
-
(1991)
Communs Pure Appl. Math.
, vol.44
, pp. 819-851
-
-
Ni, W.-M.1
Takagi, I.2
-
9
-
-
84990662413
-
On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems
-
NI, W.-M. & WEI, J. 1995 On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Communs Pure Appl. Math. 48, 731-768.
-
(1995)
Communs Pure Appl. Math.
, vol.48
, pp. 731-768
-
-
Ni, W.-M.1
Wei, J.2
-
10
-
-
0001099692
-
Non-linear singular perturbation problems: Proofs of correctness of a formal approximation based on a contraction principle in a Banach space
-
VAN HARTEN, A. 1978 Non-linear singular perturbation problems: proofs of correctness of a formal approximation based on a contraction principle in a Banach space. J. Math. Anal. Appl. 65, 126-168.
-
(1978)
J. Math. Anal. Appl.
, vol.65
, pp. 126-168
-
-
Van Harten, A.1
-
11
-
-
84972584451
-
Approximate Green functions as a tool to prove correctness of a formal approximation in a model of competing and diffusing species
-
VAN HARTEN, A. & VADER-BURGER, E. 1986 Approximate Green functions as a tool to prove correctness of a formal approximation in a model of competing and diffusing species. Pacific J. Math. 125, 225-249.
-
(1986)
Pacific J. Math.
, vol.125
, pp. 225-249
-
-
Van Harten, A.1
Vader-Burger, E.2
|