메뉴 건너뛰기




Volumn 274, Issue 2 43-2, 1998, Pages

Outer medullary anatomy and the urine concentrating mechanism

Author keywords

Mathematical model; Sensitivity analysis

Indexed keywords

ARTICLE; CELL MEMBRANE PERMEABILITY; KIDNEY CONCENTRATING CAPACITY; KIDNEY MEDULLA; MATHEMATICAL MODEL; OSMOTIC PRESSURE; PRIORITY JOURNAL; ANIMAL; BIOLOGICAL MODEL; HENLE LOOP; HISTOLOGY; MATHEMATICS; PHYSIOLOGY; RAT; REVIEW;

EID: 0031990694     PISSN: 1931857X     EISSN: 15221466     Source Type: Journal    
DOI: 10.1152/ajprenal.1998.274.2.f413     Document Type: Article
Times cited : (49)

References (31)
  • 2
    • 0002638701 scopus 로고
    • Organization of the medullary circulation: Functional Implications
    • edited by R. Robinson. New York: Springer Verlag
    • Bankir, L., N. Bouby, and M.-M. Trinh-Trang-Tan. Organization of the medullary circulation: functional Implications. In: Nephrology (Proc. IX Int. Congr. Nephrol.), edited by R. Robinson. New York: Springer Verlag, 1984, p. 84-106.
    • (1984) Nephrology (Proc. IX Int. Congr. Nephrol.) , pp. 84-106
    • Bankir, L.1    Bouby, N.2    Trinh-Trang-Tan, M.-M.3
  • 4
    • 0022384377 scopus 로고
    • Urinary concentrating ability: Insights from comparative anatomy
    • Regulatory Integrative Comp. Physiol. 18
    • Bankir, L., and C. de Rouffignac. Urinary concentrating ability: insights from comparative anatomy. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 18): R643-R666, 1985.
    • (1985) Am. J. Physiol. , vol.249
    • Bankir, L.1    De Rouffignac, C.2
  • 5
    • 0019770979 scopus 로고
    • Mathematical model of mass transport throughout the kidney: Effects of nephron heterogeneity and tubular-vascular organization
    • Chandhoke, P., and G. Saidel. Mathematical model of mass transport throughout the kidney: effects of nephron heterogeneity and tubular-vascular organization. Ann. Biomed. Engineering 9: 263-301, 1981.
    • (1981) Ann. Biomed. Engineering , vol.9 , pp. 263-301
    • Chandhoke, P.1    Saidel, G.2
  • 6
    • 0022150313 scopus 로고
    • Role of inner medullary collecting duct NaCl transport in urinary concentration
    • Renal Fluid Electrolyte Physiol. 18
    • Chandhoke, P. S., G. M. Saidel, and M. A. Knepper. Role of inner medullary collecting duct NaCl transport in urinary concentration. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F688-F697, 1985.
    • (1985) Am. J. Physiol. , vol.249
    • Chandhoke, P.S.1    Saidel, G.M.2    Knepper, M.A.3
  • 7
    • 0026877020 scopus 로고
    • Experimental tests of three-dimensional model of urinary concentrating mechanism
    • Han, J. S., K. A. Thompson, C. L. Chou, and M. A. Knepper. Experimental tests of three-dimensional model of urinary concentrating mechanism. J. Am. Soc. Nephrol. 2: 1677-1688, 1992.
    • (1992) J. Am. Soc. Nephrol. , vol.2 , pp. 1677-1688
    • Han, J.S.1    Thompson, K.A.2    Chou, C.L.3    Knepper, M.A.4
  • 9
    • 0017708101 scopus 로고
    • Quantitative analysis of renal medullary anatomy in rats and rabbits
    • Knepper, M. A., R. A. Danielson, G. M. Saidel, and R. S. Post. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 12: 313-323, 1977.
    • (1977) Kidney Int. , vol.12 , pp. 313-323
    • Knepper, M.A.1    Danielson, R.A.2    Saidel, G.M.3    Post, R.S.4
  • 10
    • 0023128178 scopus 로고
    • Pathways of urea transport in the mammalian kidney
    • Knepper, M. A., and F. Roch-Ramel. Pathways of urea transport in the mammalian kidney. Kidney Int. 31: 629-633, 1987.
    • (1987) Kidney Int. , vol.31 , pp. 629-633
    • Knepper, M.A.1    Roch-Ramel, F.2
  • 11
    • 0015406331 scopus 로고
    • Countercurrent multiplication system without active transport in inner medulla
    • Kokko, J. P., and J. F. C. Rector. Countercurrent multiplication system without active transport in inner medulla. Kidney Int. 2: 214-223, 1972.
    • (1972) Kidney Int. , vol.2 , pp. 214-223
    • Kokko, J.P.1    Rector, J.F.C.2
  • 12
    • 17544394969 scopus 로고
    • Structural organization of the renal medulla: Comparative and functional aspects
    • Regulatory Integrative Comp. Physiol. 10
    • Kriz, W. Structural organization of the renal medulla: comparative and functional aspects. Am. J. Physiol. 241 (Regulatory Integrative Comp. Physiol. 10): R3-R16, 1981.
    • (1981) Am. J. Physiol. , vol.241
    • Kriz, W.1
  • 13
    • 0020619361 scopus 로고
    • Structural organization of the renal medullary counterflow system
    • Kriz, W. Structural organization of the renal medullary counterflow system. Federation Proc. 42: 2379-2385, 1983.
    • (1983) Federation Proc. , vol.42 , pp. 2379-2385
    • Kriz, W.1
  • 14
    • 0000474506 scopus 로고
    • Structural organization of the mammalian kidney
    • edited by D. W. Seldin and G. Giebisch. New York: Raven
    • Kriz, W., and B. Kaissling. Structural organization of the mammalian kidney. In: The Kidney: Physiology and Pathophysiology (2nd ed.), edited by D. W. Seldin and G. Giebisch. New York: Raven, 1992, p. 707-777.
    • (1992) The Kidney: Physiology and Pathophysiology (2nd Ed.) , pp. 707-777
    • Kriz, W.1    Kaissling, B.2
  • 15
    • 0015453354 scopus 로고
    • The position of short and long loops of Henle in the rat kidney
    • Kriz, W., J. Schnermann, and H. Koepsell. The position of short and long loops of Henle in the rat kidney. Z. Anat. Entwicklungsgesch. 138: 301-319, 1972.
    • (1972) Z. Anat. Entwicklungsgesch. , vol.138 , pp. 301-319
    • Kriz, W.1    Schnermann, J.2    Koepsell, H.3
  • 16
    • 0022540201 scopus 로고
    • Distribution of Henle's loops may enhance urine concentrating capability
    • Layton, H. E. Distribution of Henle's loops may enhance urine concentrating capability. Biophys. J. 49: 1033-1040, 1986.
    • (1986) Biophys. J. , vol.49 , pp. 1033-1040
    • Layton, H.E.1
  • 17
    • 0027234747 scopus 로고
    • Distributed solute and water reabsorption in a central core model of the renal medulla
    • Layton, H. E., and J. M. Davies. Distributed solute and water reabsorption in a central core model of the renal medulla. Math. Biosci. 116: 169-196, 1993.
    • (1993) Math. Biosci. , vol.116 , pp. 169-196
    • Layton, H.E.1    Davies, J.M.2
  • 18
    • 0015056170 scopus 로고
    • Sodium and urea concentrations in renal papillary fluid of rats, with dehydration and vasopressin (Pitressin) administration
    • Lee, J., T. Morgan, and P. G. Williams. Sodium and urea concentrations in renal papillary fluid of rats, with dehydration and vasopressin (Pitressin) administration. J. Physiol. (Lond.) 215: 41-42, 1971.
    • (1971) J. Physiol. (Lond.) , vol.215 , pp. 41-42
    • Lee, J.1    Morgan, T.2    Williams, P.G.3
  • 19
    • 0023115785 scopus 로고
    • Cycles and separations: The histotopography of the urinary concentrating process
    • Lemley, K. V., and W. Kriz. Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int. 31: 538-548, 1987.
    • (1987) Kidney Int. , vol.31 , pp. 538-548
    • Lemley, K.V.1    Kriz, W.2
  • 20
    • 0030845197 scopus 로고    scopus 로고
    • Evidence that aquaporin-1 mediates NaCl-induced water flux across descending vasa recta
    • Renal Physiol. 41
    • Pallone, T. L., B. K. Kishore, S. Nielsen, P. Agre, and M. A. Knepper. Evidence that aquaporin-1 mediates NaCl-induced water flux across descending vasa recta. Am. J. Physiol. 272 (Renal Physiol. 41): F587-F596, 1997.
    • (1997) Am. J. Physiol. , vol.272
    • Pallone, T.L.1    Kishore, B.K.2    Nielsen, S.3    Agre, P.4    Knepper, M.A.5
  • 21
    • 0029121490 scopus 로고
    • Diffusive transport of solute in the rat medullary microcirculation
    • Renal Fluid Electrolyte Physiol. 38
    • Pallone, T. L., S. Nielsen, E. P. Silldorff, and S. Yang. Diffusive transport of solute in the rat medullary microcirculation. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F55-F63, 1995.
    • (1995) Am. J. Physiol. , vol.269
    • Pallone, T.L.1    Nielsen, S.2    Silldorff, E.P.3    Yang, S.4
  • 22
    • 0028009646 scopus 로고
    • Transport of sodium and urea in outer medullary descending vasa recta
    • Pallone, T. L., J. Work, R. L. Myers, and R. L. Jamison. Transport of sodium and urea in outer medullary descending vasa recta. J. Clin. Invest. 93: 212-222, 1994.
    • (1994) J. Clin. Invest. , vol.93 , pp. 212-222
    • Pallone, T.L.1    Work, J.2    Myers, R.L.3    Jamison, R.L.4
  • 24
    • 0015385254 scopus 로고
    • Concentration of urine in a central core model of the renal counterflow system
    • Stephenson, J. Concentration of urine in a central core model of the renal counterflow system. Kidney Int. 2: 85-94, 1972.
    • (1972) Kidney Int. , vol.2 , pp. 85-94
    • Stephenson, J.1
  • 25
    • 0028944132 scopus 로고
    • Convective uphill transport of NaCl from ascending thin limb of loop of Henle
    • Renal Fluid Electrolyte Physiol. 37
    • Stephenson, J. L., J. F. Jen, H. Wang, and R. P. Tewarson. Convective uphill transport of NaCl from ascending thin limb of loop of Henle. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F680-F692, 1995.
    • (1995) Am. J. Physiol. , vol.268
    • Stephenson, J.L.1    Jen, J.F.2    Wang, H.3    Tewarson, R.P.4
  • 26
    • 0024502870 scopus 로고
    • +-ATPase activities in renal tubules segments of rat inner medulla
    • Renal Fluid Electrolyte Physiol. 25
    • +-ATPase activities in renal tubules segments of rat inner medulla. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F218-F223, 1989.
    • (1989) Am. J. Physiol. , vol.256
    • Terada, Y.1    Knepper, M.2
  • 27
    • 0029162283 scopus 로고
    • Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism
    • Renal Fluid Electrolyte Physiol. 38
    • Thomas, S. R., and A. S. Wexler. Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism. Am. J. Physiol. 269 (Renal Fluid Electrolyte Physiol. 38): F159-F171, 1995.
    • (1995) Am. J. Physiol. , vol.269
    • Thomas, S.R.1    Wexler, A.S.2
  • 28
    • 0030896980 scopus 로고    scopus 로고
    • Cloning and characterization of the urea transporter UT3: Localization in rat kidney and testis
    • Tsukaguchi, H., C. Shayakul, U. V. Berger, T. Tokui, D. Brown, and M. A. Hediger. Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis. J. Clin. Invest. 99: 1506-15, 1997.
    • (1997) J. Clin. Invest. , vol.99 , pp. 1506-1515
    • Tsukaguchi, H.1    Shayakul, C.2    Berger, U.V.3    Tokui, T.4    Brown, D.5    Hediger, M.A.6
  • 29
    • 0029892636 scopus 로고    scopus 로고
    • The effects of collecting duct active NaCl reabsorption and inner medulla anatomy on renal concentrating mechanism
    • Renal Fluid Electrolyte Physiol. 39
    • Wang, X., and A. S. Wexler. The effects of collecting duct active NaCl reabsorption and inner medulla anatomy on renal concentrating mechanism. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F900-F911, 1996.
    • (1996) Am. J. Physiol. , vol.270
    • Wang, X.1    Wexler, A.S.2
  • 30
    • 0025825310 scopus 로고
    • Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results
    • Renal Fluid Electrolyte Physiol. 29
    • Wexler, A. S., R. E. Kalaba, and D. J. Marsh. Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F368-F383, 1991.
    • (1991) Am. J. Physiol. , vol.260
    • Wexler, A.S.1    Kalaba, R.E.2    Marsh, D.J.3
  • 31
    • 0025803809 scopus 로고
    • Three-dimensional anatomy and renal concentrating mechanism. II. Sensitivity results
    • Renal Fluid Electrolyte Physiol. 29
    • Wexler, A. S., R. E. Kalaba, and D. J. Marsh. Three-dimensional anatomy and renal concentrating mechanism. II. Sensitivity results. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F384-F394, 1991.
    • (1991) Am. J. Physiol. , vol.260
    • Wexler, A.S.1    Kalaba, R.E.2    Marsh, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.