메뉴 건너뛰기




Volumn 11, Issue 1, 1998, Pages 89-116

Neural networks for predicting conditional probability densities: Improved training scheme combining EM and RVFL

Author keywords

Automatic relevance determination; Conditional probability density; Expectation maximization algorithm; Gaussian mixture model; Generalization performance; Maximum likelihood; Model complexity; Network committees; Random vector functional link net approach; Time series prediction

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER ARCHITECTURE; COMPUTER SIMULATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DENSITY FUNCTION; RANDOM PROCESSES; TIME SERIES ANALYSIS; VECTORS;

EID: 0031913824     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(97)00089-0     Document Type: Article
Times cited : (29)

References (33)
  • 1
    • 0011237372 scopus 로고
    • Learning time series by neural networks
    • In M. Marinaro & P. Morasso (Eds), Berlin: Springer
    • Allen, D. & Taylor, J.G. (1994). Learning time series by neural networks. In M. Marinaro & P. Morasso (Eds), Proceedings of ICANN 94 (pp. 529-532). Berlin: Springer.
    • (1994) Proceedings of ICANN 94 , pp. 529-532
    • Allen, D.1    Taylor, J.G.2
  • 2
    • 0004113976 scopus 로고
    • Technical Report, Aston University, Birmimgham, UK
    • Bishop, C.M. (1994). Mixture density networks. Technical Report, Aston University, Birmimgham, UK.
    • (1994) Mixture Density Networks
    • Bishop, C.M.1
  • 4
    • 44949273552 scopus 로고
    • State space reconstruction in the presence of noise
    • Casdagli M., Eubank S., Farmer J.D., Gibson J. State space reconstruction in the presence of noise. Physica. D51:1991;52-98.
    • (1991) Physica , vol.51 , pp. 52-98
    • Casdagli, M.1    Eubank, S.2    Farmer, J.D.3    Gibson, J.4
  • 7
    • 0031128248 scopus 로고    scopus 로고
    • Predicting conditional probability densities of stationary stochastic time series
    • Husmeier D., Taylor J.G. Predicting conditional probability densities of stationary stochastic time series. Neural Networks. 10(3):1997;479-497.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 479-497
    • Husmeier, D.1    Taylor, J.G.2
  • 8
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive functional approximation and the functional-link net
    • Igelnik B., Pao Y.H. Stochastic choice of basis functions in adaptive functional approximation and the functional-link net. IEEE Transactions on Neural Networks. 6:1995;1320-1329.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.H.2
  • 9
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan M.I., Jacobs R.A. Hierarchical mixtures of experts and the EM algorithm. Neural Computation. 6:1994;181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 10
    • 0029617280 scopus 로고
    • Convergence results for the EM approach to mixtures of experts architectures
    • Jordan M.I., Xu L. Convergence results for the EM approach to mixtures of experts architectures. Neural Networks. 8:1995;1409-1431.
    • (1995) Neural Networks , vol.8 , pp. 1409-1431
    • Jordan, M.I.1    Xu, L.2
  • 11
    • 0039240492 scopus 로고    scopus 로고
    • Statistical mechanics of ensemble learning
    • Krogh A., Sollich P. Statistical mechanics of ensemble learning. Physical Review. E 55:1997;811-825.
    • (1997) Physical Review , vol.55 , pp. 811-825
    • Krogh, A.1    Sollich, P.2
  • 13
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D.J.C. (1992a). Bayesian interpolation. Neural Computation, 4, 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 14
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D.J.C. (1992b). A practical Bayesian framework for backpropagation networks. Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 15
    • 0007826152 scopus 로고
    • Bayesian non-linear modeling for the prediction competition
    • In G.R. Heidbreder (Ed.), Santa Barbara, CA: Kluwer Academic
    • MacKay, D.J.C. (1993). Bayesian non-linear modeling for the prediction competition. In G.R. Heidbreder (Ed.), Maximum entropy and Bayesian methods (pp. 221-234) Santa Barbara, CA: Kluwer Academic.
    • (1993) Maximum Entropy and Bayesian Methods , pp. 221-234
    • MacKay, D.J.C.1
  • 16
    • 0000513303 scopus 로고
    • Principled architecture selection for neural networks: Application to corporate bond rating prediction
    • In J.E. Moody, S.J. Hanson & R.P. Lippman (Eds), San Mateo, CA: Morgan Kaufmann
    • Moody, J. & Utans, J. (1992). Principled architecture selection for neural networks: application to corporate bond rating prediction. In J.E. Moody, S.J. Hanson & R.P. Lippman (Eds), Advances in neural information processing systems 4 (pp. 683-690), San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 683-690
    • Moody, J.1    Utans, J.2
  • 18
    • 0002245041 scopus 로고
    • Estimation of conditional densities: A comparison of neural network approaches
    • In M. Marinaro & P. Morasso (Eds), Berlin: Springer
    • Neuneier, R., Hergert, F., Finnoff, W. & Ormoneit, D. (1994). Estimation of conditional densities: a comparison of neural network approaches. In M. Marinaro & P. Morasso (Eds), Proceedings of ICANN 94 (pp. 689-692). Berlin: Springer.
    • (1994) Proceedings of ICANN 94 , pp. 689-692
    • Neuneier, R.1    Hergert, F.2    Finnoff, W.3    Ormoneit, D.4
  • 21
    • 85156248415 scopus 로고    scopus 로고
    • Improved gaussian mixture density estimates using Bayesian penalty terms and network averaging
    • In D.S. Touretzky, M.C. Mozer & M.E. Hasselmo (Eds), San Mateo, CA: Morgan Kaufmann
    • Ormoneit, D. & Tresp, V. (1996). Improved gaussian mixture density estimates using Bayesian penalty terms and network averaging. In D.S. Touretzky, M.C. Mozer & M.E. Hasselmo (Eds), Advances in Neural Information Processing Systems 8 (pp. 542-548). San Mateo, CA: Morgan Kaufmann.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 542-548
    • Ormoneit, D.1    Tresp, V.2
  • 22
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Pao Y.H., Park G.H., Sobajic D.J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing. 6:1994;163-180.
    • (1994) Neurocomputing , vol.6 , pp. 163-180
    • Pao, Y.H.1    Park, G.H.2    Sobajic, D.J.3
  • 23
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Annals of Mathematical Statistics. 33:1962;1065-1076.
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 25
    • 0000201186 scopus 로고
    • On langevin updating in multilayer perceptrons
    • Rögnvaldsson T. On langevin updating in multilayer perceptrons. Neural Computation. 6:1994;916-926.
    • (1994) Neural Computation , vol.6 , pp. 916-926
    • Rögnvaldsson, T.1
  • 26
    • 0344138340 scopus 로고
    • Diversity, neural nets and safety critical applications
    • In L. Niklasson & M. Boden (Eds), Hillsdale, NJ: Lawrence Erlbaum Associates
    • Sharkey, A.J.C., Sharkey, N.E. & Gopinath, O.C. (1995). Diversity, neural nets and safety critical applications. In L. Niklasson & M. Boden (Eds), Current trends in connectionism (pp. 165-178). Hillsdale, NJ: Lawrence Erlbaum Associates.
    • (1995) Current Trends in Connectionism , pp. 165-178
    • Sharkey, A.J.C.1    Sharkey, N.E.2    Gopinath, O.C.3
  • 28
    • 85127438349 scopus 로고    scopus 로고
    • Learning with ensembles: How over-fitting can be useful
    • In D.S. Tourezky, M.C. Mozer & M.E. Hasselmo (Eds), San Mateo, CA: Morgan Kaufmann
    • Sollich, P. & Krogh, A. (1996). Learning with ensembles: how over-fitting can be useful. In D.S. Tourezky, M.C. Mozer & M.E. Hasselmo (Eds), Advances in neural information processing systems 8 (pp. 190-196). San Mateo, CA: Morgan Kaufmann.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 190-196
    • Sollich, P.1    Krogh, A.2
  • 29
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Networks. 3(1):1990;109-118.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 30
    • 0011188689 scopus 로고
    • Computing the probability density in connectionist regression
    • In M. Marinaro & P. Morasso (Eds), Berlin: Springer
    • Srivastava, A.N. & Weigend, A.S. (1994). Computing the probability density in connectionist regression. In M. Marinaro & P. Morasso (Eds), Proceedings of ICANN 94 (pp. 685-688). Berlin: Springer.
    • (1994) Proceedings of ICANN 94 , pp. 685-688
    • Srivastava, A.N.1    Weigend, A.S.2
  • 31
    • 0000779360 scopus 로고
    • Detecting strange attractors in fluid turbulence
    • In D. Rand & L.S. Young (Eds), Berlin: Springer
    • Takens, F. (1981). Detecting strange attractors in fluid turbulence. In D. Rand & L.S. Young (Eds), Dynamical systems and turbulence. Berlin: Springer.
    • (1981) Dynamical Systems and Turbulence
    • Takens, F.1
  • 33
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks. 5(2):1992;241-259.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.