메뉴 건너뛰기




Volumn 37, Issue 1-2, 1998, Pages 142-144

Correlation between 51V NMR Chemical Shift and Reactivity of Oxovanadium(v) Catalysts for Ethylene Polymerization

Author keywords

Density functional calculations; Homogeneous catalysis; NMR spectroscopy; Polymerization; Vanadium

Indexed keywords


EID: 0031881685     PISSN: 14337851     EISSN: None     Source Type: Journal    
DOI: 10.1002/(sici)1521-3773(19980202)37:1/2<142::aid-anie142>3.0.co;2-c     Document Type: Article
Times cited : (33)

References (42)
  • 2
    • 0002344073 scopus 로고    scopus 로고
    • b) W. A. Herrmann, B. Cornils, Angew. Chem. 1997, 109, 1074-1095; Angew. Chem. Int. Ed. Engl. 1997, 36, 1049-1067.
    • (1997) Angew. Chem. , vol.109 , pp. 1074-1095
    • Herrmann, W.A.1    Cornils, B.2
  • 3
    • 0000925765 scopus 로고    scopus 로고
    • b) W. A. Herrmann, B. Cornils, Angew. Chem. 1997, 109, 1074-1095; Angew. Chem. Int. Ed. Engl. 1997, 36, 1049-1067.
    • (1997) Angew. Chem. Int. Ed. Engl. , vol.36 , pp. 1049-1067
  • 7
    • 33746295241 scopus 로고
    • H. H. Brintzinger, D. Fischer, R. Mühlhaupt, B. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283; Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.
    • (1995) Angew. Chem. Int. Ed. Engl. , vol.34 , pp. 1143
  • 12
    • 4243553426 scopus 로고
    • Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
    • (1988) Phys. Rev. A , vol.38 , pp. 3098-3100
    • Becke, A.D.1
  • 13
    • 5944261746 scopus 로고
    • Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
    • (1986) Phys. Rev. B , vol.33 , pp. 8822-8824
    • Perdew, J.P.1
  • 14
    • 4043083704 scopus 로고
    • Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
    • (1986) Phys. Rev. B , vol.34 , pp. 7406
  • 15
    • 0005867244 scopus 로고
    • Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
    • (1970) J. Chem. Phys. , vol.52 , pp. 1033-1036
    • Wachters, A.J.H.1
  • 16
    • 10144223417 scopus 로고
    • Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
    • (1977) J. Chem. Phys. , vol.66 , pp. 4377-4384
    • Hay, P.J.1
  • 17
    • 84944675147 scopus 로고
    • Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
    • (1993) Mol. Phys. , vol.80 , pp. 1431-1441
    • Bergner, A.1    Dolg, M.2    Küchle, W.3    Stoll, H.4    Preuss, K.5
  • 18
    • 84873055189 scopus 로고
    • Wiley, New York
    • Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
    • (1986) Ab Initio Molecular Orbital Theory
    • Hehre, W.1    Radom, L.2    Von Schleyer, P.R.3    Pople, J.A.4
  • 19
    • 0001312501 scopus 로고
    • Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
    • (1995) Can. J. Chem. , vol.73 , pp. 743-761
    • Ziegler, T.1
  • 26
  • 27
    • 0005332341 scopus 로고
    • a) H. Jiao, P. von R. Schleyer, Angew. Chem. 1993, 105, 1830-1833; Angew. Chem. Int. Ed. Engl. 1993, 32, 1760-1763;
    • (1993) Angew. Chem. , vol.105 , pp. 1830-1833
    • Jiao, H.1    Von Schleyer, P.R.2
  • 28
    • 33748225178 scopus 로고
    • a) H. Jiao, P. von R. Schleyer, Angew. Chem. 1993, 105, 1830-1833; Angew. Chem. Int. Ed. Engl. 1993, 32, 1760-1763;
    • (1993) Angew. Chem. Int. Ed. Engl. , vol.32 , pp. 1760-1763
  • 31
    • 0000572756 scopus 로고
    • For the origin of paramagnetic contributions see, for example: W. Kutzelnigg, U. Fleischer, M. Schindler, in NMR Basic Princ. Prog. 1990, 23, 165-262; an illustration for transition metal complexes can be found in, for example, Y. Ruiz-Morales, G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1996, 100, 3359-3367.
    • (1990) NMR Basic Princ. Prog. , vol.23 , pp. 165-262
    • Kutzelnigg, W.1    Fleischer, U.2    Schindler, M.3
  • 32
    • 5244286375 scopus 로고    scopus 로고
    • For the origin of paramagnetic contributions see, for example: W. Kutzelnigg, U. Fleischer, M. Schindler, in NMR Basic Princ. Prog. 1990, 23, 165-262; an illustration for transition metal complexes can be found in, for example, Y. Ruiz-Morales, G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1996, 100, 3359-3367.
    • (1996) J. Phys. Chem. , vol.100 , pp. 3359-3367
    • Ruiz-Morales, Y.1    Schreckenbach, G.2    Ziegler, T.3
  • 33
    • 0024827419 scopus 로고
    • See for example: a) P. DeShong, D. R. Sidler, P. J. Rybczynski, A. A. Ogilvie,W. von Philipsborn, J. Org. Chem. 1989, 54, 5432-5437; b) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-468; c) M. Koller, Ph.D. Thesis, Universität Zurich, 1993: d) E. J. Meier, W. Kozminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 1996, 15, 2469-2477.
    • (1989) J. Org. Chem. , vol.54 , pp. 5432-5437
    • DeShong, P.1    Sidler, D.R.2    Rybczynski, P.J.3    Ogilvie, A.A.4    Von Philipsborn, W.5
  • 34
    • 0001406371 scopus 로고
    • See for example: a) P. DeShong, D. R. Sidler, P. J. Rybczynski, A. A. Ogilvie,W. von Philipsborn, J. Org. Chem. 1989, 54, 5432-5437; b) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-468; c) M. Koller, Ph.D. Thesis, Universität Zurich, 1993: d) E. J. Meier, W. Kozminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 1996, 15, 2469-2477.
    • (1992) Organometallics , vol.11 , pp. 467-468
    • Koller, M.1    Von Philipsborn, W.2
  • 35
    • 0348025289 scopus 로고
    • Ph.D. Thesis, Universität Zurich
    • See for example: a) P. DeShong, D. R. Sidler, P. J. Rybczynski, A. A. Ogilvie,W. von Philipsborn, J. Org. Chem. 1989, 54, 5432-5437; b) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-468; c) M. Koller, Ph.D. Thesis, Universität Zurich, 1993: d) E. J. Meier, W. Kozminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 1996, 15, 2469-2477.
    • (1993)
    • Koller, M.1
  • 36
    • 0001563625 scopus 로고    scopus 로고
    • See for example: a) P. DeShong, D. R. Sidler, P. J. Rybczynski, A. A. Ogilvie,W. von Philipsborn, J. Org. Chem. 1989, 54, 5432-5437; b) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-468; c) M. Koller, Ph.D. Thesis, Universität Zurich, 1993: d) E. J. Meier, W. Kozminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 1996, 15, 2469-2477.
    • (1996) Organometallics , vol.15 , pp. 2469-2477
    • Meier, E.J.1    Kozminski, W.2    Linden, A.3    Lustenberger, P.4    Von Philipsborn, W.5
  • 41
    • 0346764154 scopus 로고    scopus 로고
    • No NMR spectra are necessary to order possible cocatalysts according to their Lewis acid strength, but rather to ensure that stable complexes are formed in each case
    • No NMR spectra are necessary to order possible cocatalysts according to their Lewis acid strength, but rather to ensure that stable complexes are formed in each case.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.