-
1
-
-
0003616618
-
-
VCH, Weinheim
-
a) Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1,2 (Eds.: B. Cornils, W. A. Herrmann), VCH, Weinheim, 1996;
-
(1996)
Applied Homogeneous Catalysis with Organometallic Compounds
, vol.1-2
-
-
Cornils, B.1
Herrmann, W.A.2
-
2
-
-
0002344073
-
-
b) W. A. Herrmann, B. Cornils, Angew. Chem. 1997, 109, 1074-1095; Angew. Chem. Int. Ed. Engl. 1997, 36, 1049-1067.
-
(1997)
Angew. Chem.
, vol.109
, pp. 1074-1095
-
-
Herrmann, W.A.1
Cornils, B.2
-
3
-
-
0000925765
-
-
b) W. A. Herrmann, B. Cornils, Angew. Chem. 1997, 109, 1074-1095; Angew. Chem. Int. Ed. Engl. 1997, 36, 1049-1067.
-
(1997)
Angew. Chem. Int. Ed. Engl.
, vol.36
, pp. 1049-1067
-
-
-
6
-
-
0000868845
-
-
H. H. Brintzinger, D. Fischer, R. Mühlhaupt, B. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283; Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.
-
(1995)
Angew. Chem.
, vol.107
, pp. 1255-1283
-
-
Brintzinger, H.H.1
Fischer, D.2
Mühlhaupt, R.3
Rieger, B.4
Waymouth, R.5
-
7
-
-
33746295241
-
-
H. H. Brintzinger, D. Fischer, R. Mühlhaupt, B. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283; Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 1143
-
-
-
8
-
-
0002017342
-
-
Eds.: W. Kaminsky, H. Sinn, Springer, New York
-
See for example: F. J. Karol, K. J. Cann, B. E. Wagner in Transition Metals and Organometallics as Catalysts for Olefin Polymerization (Eds.: W. Kaminsky, H. Sinn), Springer, New York, 1988, p. 149.
-
(1988)
Transition Metals and Organometallics as Catalysts for Olefin Polymerization
, pp. 149
-
-
Karol, F.J.1
Cann, K.J.2
Wagner, B.E.3
-
12
-
-
4243553426
-
-
Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
-
(1988)
Phys. Rev. A
, vol.38
, pp. 3098-3100
-
-
Becke, A.D.1
-
13
-
-
5944261746
-
-
Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
-
(1986)
Phys. Rev. B
, vol.33
, pp. 8822-8824
-
-
Perdew, J.P.1
-
14
-
-
4043083704
-
-
Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
-
(1986)
Phys. Rev. B
, vol.34
, pp. 7406
-
-
-
15
-
-
0005867244
-
-
Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
-
(1970)
J. Chem. Phys.
, vol.52
, pp. 1033-1036
-
-
Wachters, A.J.H.1
-
16
-
-
10144223417
-
-
Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
-
(1977)
J. Chem. Phys.
, vol.66
, pp. 4377-4384
-
-
Hay, P.J.1
-
17
-
-
84944675147
-
-
Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
-
(1993)
Mol. Phys.
, vol.80
, pp. 1431-1441
-
-
Bergner, A.1
Dolg, M.2
Küchle, W.3
Stoll, H.4
Preuss, K.5
-
18
-
-
84873055189
-
-
Wiley, New York
-
Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
-
(1986)
Ab Initio Molecular Orbital Theory
-
-
Hehre, W.1
Radom, L.2
Von Schleyer, P.R.3
Pople, J.A.4
-
19
-
-
0001312501
-
-
Method for geometry optimization: gradient-corrected exchange-correlation functionals of Becke (A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100) and Perdew (J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824; ibid. 1986, 34, 7406), denoted BP86, and Basis I, which is Wachters's (14s11p6d)/[8s7p4d] all-electron basis augmented with one additional diffuse d function and two 4p functions for V (A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033-1036; P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384), a relativistic 64-electron multi-electron-fit effective core potential together with the (4s4p)/[2s2p] valence double-zeta basis set for Sb (A. Bergner, M. Dolg, W. Küchle, H. Stoll, K. Preuss, Mol. Phys. 1993, 80, 1431-1441: augmented with one d-polarization function, exponent 0.211), and standard 6-31G* basis for all other elements (e.g. W. Hehre, L. Radom, P. von R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986). Zero-point corrections have been computed with harmonic frequencies from analytical or numerical second derivatives. It is known that these types of density functionals afford reliable descriptions of geometries, vibrations, and energetics for transition metal complexes (see, for example, T. Ziegler, Can. J. Chem. 1995, 73, 743-761).
-
(1995)
Can. J. Chem.
, vol.73
, pp. 743-761
-
-
Ziegler, T.1
-
21
-
-
0004133516
-
-
Pittsburgh PA
-
[8]
-
(1995)
Gaussian 94
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Gill, P.M.W.4
Johnson, B.G.5
Robb, M.A.6
Cheeseman, J.R.7
Keith, T.8
Petersson, G.A.9
Montgomery, J.A.10
Raghavachari, K.11
Al-Laham, M.A.12
Zakrzewski, V.G.13
Ortiz, J.V.14
Foresman, J.B.15
Peng, C.Y.16
Ayala, P.Y.17
Chen, W.18
Wong, M.W.19
Andres, J.L.20
Replogle, E.S.21
Gomperts, R.22
Martin, R.L.23
Fox, D.J.24
Binkley, J.S.25
DeFrees, D.J.26
Baker, J.27
Stewart, J.J.P.28
Head-Gordon, M.29
Gonzales, C.30
Pople, J.A.31
more..
-
25
-
-
0011083499
-
-
From natural population analysis; review: A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926.
-
(1988)
Chem. Rev.
, vol.88
, pp. 899-926
-
-
Reed, A.E.1
Curtiss, L.A.2
Weinhold, F.3
-
26
-
-
37549006850
-
-
K. Wiberg, Tetrahedron 1968, 24, 1083-1096.
-
(1968)
Tetrahedron
, vol.24
, pp. 1083-1096
-
-
Wiberg, K.1
-
27
-
-
0005332341
-
-
a) H. Jiao, P. von R. Schleyer, Angew. Chem. 1993, 105, 1830-1833; Angew. Chem. Int. Ed. Engl. 1993, 32, 1760-1763;
-
(1993)
Angew. Chem.
, vol.105
, pp. 1830-1833
-
-
Jiao, H.1
Von Schleyer, P.R.2
-
28
-
-
33748225178
-
-
a) H. Jiao, P. von R. Schleyer, Angew. Chem. 1993, 105, 1830-1833; Angew. Chem. Int. Ed. Engl. 1993, 32, 1760-1763;
-
(1993)
Angew. Chem. Int. Ed. Engl.
, vol.32
, pp. 1760-1763
-
-
-
31
-
-
0000572756
-
-
For the origin of paramagnetic contributions see, for example: W. Kutzelnigg, U. Fleischer, M. Schindler, in NMR Basic Princ. Prog. 1990, 23, 165-262; an illustration for transition metal complexes can be found in, for example, Y. Ruiz-Morales, G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1996, 100, 3359-3367.
-
(1990)
NMR Basic Princ. Prog.
, vol.23
, pp. 165-262
-
-
Kutzelnigg, W.1
Fleischer, U.2
Schindler, M.3
-
32
-
-
5244286375
-
-
For the origin of paramagnetic contributions see, for example: W. Kutzelnigg, U. Fleischer, M. Schindler, in NMR Basic Princ. Prog. 1990, 23, 165-262; an illustration for transition metal complexes can be found in, for example, Y. Ruiz-Morales, G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1996, 100, 3359-3367.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 3359-3367
-
-
Ruiz-Morales, Y.1
Schreckenbach, G.2
Ziegler, T.3
-
33
-
-
0024827419
-
-
See for example: a) P. DeShong, D. R. Sidler, P. J. Rybczynski, A. A. Ogilvie,W. von Philipsborn, J. Org. Chem. 1989, 54, 5432-5437; b) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-468; c) M. Koller, Ph.D. Thesis, Universität Zurich, 1993: d) E. J. Meier, W. Kozminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 1996, 15, 2469-2477.
-
(1989)
J. Org. Chem.
, vol.54
, pp. 5432-5437
-
-
DeShong, P.1
Sidler, D.R.2
Rybczynski, P.J.3
Ogilvie, A.A.4
Von Philipsborn, W.5
-
34
-
-
0001406371
-
-
See for example: a) P. DeShong, D. R. Sidler, P. J. Rybczynski, A. A. Ogilvie,W. von Philipsborn, J. Org. Chem. 1989, 54, 5432-5437; b) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-468; c) M. Koller, Ph.D. Thesis, Universität Zurich, 1993: d) E. J. Meier, W. Kozminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 1996, 15, 2469-2477.
-
(1992)
Organometallics
, vol.11
, pp. 467-468
-
-
Koller, M.1
Von Philipsborn, W.2
-
35
-
-
0348025289
-
-
Ph.D. Thesis, Universität Zurich
-
See for example: a) P. DeShong, D. R. Sidler, P. J. Rybczynski, A. A. Ogilvie,W. von Philipsborn, J. Org. Chem. 1989, 54, 5432-5437; b) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-468; c) M. Koller, Ph.D. Thesis, Universität Zurich, 1993: d) E. J. Meier, W. Kozminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 1996, 15, 2469-2477.
-
(1993)
-
-
Koller, M.1
-
36
-
-
0001563625
-
-
See for example: a) P. DeShong, D. R. Sidler, P. J. Rybczynski, A. A. Ogilvie,W. von Philipsborn, J. Org. Chem. 1989, 54, 5432-5437; b) M. Koller, W. von Philipsborn, Organometallics 1992, 11, 467-468; c) M. Koller, Ph.D. Thesis, Universität Zurich, 1993: d) E. J. Meier, W. Kozminski, A. Linden, P. Lustenberger, W. von Philipsborn, Organometallics 1996, 15, 2469-2477.
-
(1996)
Organometallics
, vol.15
, pp. 2469-2477
-
-
Meier, E.J.1
Kozminski, W.2
Linden, A.3
Lustenberger, P.4
Von Philipsborn, W.5
-
37
-
-
0001274107
-
-
H. Bönnemann, W. Brijoux, R. Brinkmann, W. Meurers, R. Mynott, W. von Philipsborn, T. Egolf, J. Organomet. Chem. 1984, 272, 231-249.
-
(1984)
J. Organomet. Chem.
, vol.272
, pp. 231-249
-
-
Bönnemann, H.1
Brijoux, W.2
Brinkmann, R.3
Meurers, W.4
Mynott, R.5
Von Philipsborn, W.6
Egolf, T.7
-
38
-
-
37049087242
-
-
R. Fornika, H. Görls, B. Seeman, W. Leitner, J. Chem. Soc. Chem. Commun. 1995, 1479-1480.
-
(1995)
J. Chem. Soc. Chem. Commun.
, pp. 1479-1480
-
-
Fornika, R.1
Görls, H.2
Seeman, B.3
Leitner, W.4
-
39
-
-
0040346275
-
-
a) M. Bühl, O. L. Malkina, V. G. Malkin, Helv. Chim. Acta 1996, 79, 742-754;
-
(1996)
Helv. Chim. Acta
, vol.79
, pp. 742-754
-
-
Bühl, M.1
Malkina, O.L.2
Malkin, V.G.3
-
41
-
-
0346764154
-
-
No NMR spectra are necessary to order possible cocatalysts according to their Lewis acid strength, but rather to ensure that stable complexes are formed in each case
-
No NMR spectra are necessary to order possible cocatalysts according to their Lewis acid strength, but rather to ensure that stable complexes are formed in each case.
-
-
-
|