메뉴 건너뛰기




Volumn 26, Issue 3, 1998, Pages 153-226

Nonparametric identification of nonlinear biomedical systems, part I: Theory

Author keywords

Block structured models; Estimation; Nonparametric; Volterra kernels; Wiener kernels

Indexed keywords

MATHEMATICAL MODELS; PHYSIOLOGY;

EID: 0031727154     PISSN: 0278940X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (29)

References (136)
  • 1
    • 0019806963 scopus 로고
    • Nonlinear system modeling based on the Wiener theory
    • Schetzen, M., Nonlinear system modeling based on the Wiener theory, Proc. IEEE, 69, 1557-1573, 1981.
    • (1981) Proc. IEEE , vol.69 , pp. 1557-1573
    • Schetzen, M.1
  • 3
    • 0022899735 scopus 로고
    • Nonlinear analysis: Mathematical theory and biological applications
    • Sakuranaga, M., Sato, S., Hida, E., and Naka, K.-I., Nonlinear analysis: mathematical theory and biological applications, CRC Crit. Rev. Biomed. Eng., 14, 127-184, 1986.
    • (1986) CRC Crit. Rev. Biomed. Eng. , vol.14 , pp. 127-184
    • Sakuranaga, M.1    Sato, S.2    Hida, E.3    Naka, K.-I.4
  • 4
    • 0026533782 scopus 로고
    • White-noise analysis in neurophysiology
    • Sakai, H. M., White-noise analysis in neurophysiology, Physiol. Rev., 72, 491-505, 1992.
    • (1992) Physiol. Rev. , vol.72 , pp. 491-505
    • Sakai, H.M.1
  • 5
    • 0027273402 scopus 로고
    • Wiener and Volterra analyses applied to the auditory system
    • Eggermont, J. J., Wiener and Volterra analyses applied to the auditory system, Hear. Res., 66, 177-201, 1993.
    • (1993) Hear. Res. , vol.66 , pp. 177-201
    • Eggermont, J.J.1
  • 6
    • 84943460003 scopus 로고
    • Measurement of the Wiener kernels of a non-linear system by cross-correlation
    • Lee, Y. W. and Schetzen, M., Measurement of the Wiener kernels of a non-linear system by cross-correlation, Int. J. Control, 2, 237-254, 1965.
    • (1965) Int. J. Control , vol.2 , pp. 237-254
    • Lee, Y.W.1    Schetzen, M.2
  • 7
    • 0346135792 scopus 로고
    • Measurement of the kernels of a nonlinear system by crosscorrelation
    • MIT Electronics Research Lab
    • Schetzen, M., Measurement of the kernels of a nonlinear system by crosscorrelation, Quarterly Progress Report 60:118-130, MIT Electronics Research Lab, 1961.
    • (1961) Quarterly Progress Report , vol.60 , pp. 118-130
    • Schetzen, M.1
  • 8
    • 0346135791 scopus 로고
    • Measurement of the kernels of a nonlinear system by crosscorrelation with Gaussian non-white inputs
    • MIT Electronics Research Laboratory of Electronics
    • Schetzen, M., Measurement of the kernels of a nonlinear system by crosscorrelation with Gaussian non-white inputs, Quarterly Progress Report 63, MIT Electronics Research Laboratory of Electronics, 113-117, 1961.
    • (1961) Quarterly Progress Report , vol.63 , pp. 113-117
    • Schetzen, M.1
  • 9
    • 0346135793 scopus 로고
    • Editors introduction to the special issue on nonlinear modeling of physiological systems
    • Marmarelis, V. Z., Editors introduction to the special issue on nonlinear modeling of physiological systems, Ann. Biomed. Eng., 16, 1-2, 1988.
    • (1988) Ann. Biomed. Eng. , vol.16 , pp. 1-2
    • Marmarelis, V.Z.1
  • 10
    • 0348027624 scopus 로고
    • Editors introduction to the special issue on nonlinear physiological system modeling
    • Sun, H. H., Looft, F., and Madan, R. N., Editors introduction to the special issue on nonlinear physiological system modeling, Ann. Biomed. Eng., 19, 341-343, 1991.
    • (1991) Ann. Biomed. Eng. , vol.19 , pp. 341-343
    • Sun, H.H.1    Looft, F.2    Madan, R.N.3
  • 14
    • 0025676386 scopus 로고
    • The identification of nonlinear biological systems: Wiener kernel approaches
    • Korenberg, M. J. and Hunter, I. W., The identification of nonlinear biological systems: Wiener kernel approaches, Ann. Biomed. Eng., 18, 629-654, 1990.
    • (1990) Ann. Biomed. Eng. , vol.18 , pp. 629-654
    • Korenberg, M.J.1    Hunter, I.W.2
  • 15
    • 0029669428 scopus 로고    scopus 로고
    • The identification of nonlinear biological systems: Volterra kernel approaches
    • Corrected version appears in Vol. 24, No. 4
    • Korenberg, M. J. and Hunter, I. W., The identification of nonlinear biological systems: Volterra kernel approaches, Ann. Biomed. Eng., 24, 250-268, 1996. Corrected version appears in Vol. 24, No. 4.
    • (1996) Ann. Biomed. Eng. , vol.24 , pp. 250-268
    • Korenberg, M.J.1    Hunter, I.W.2
  • 17
    • 84949075045 scopus 로고
    • Subspace model identification part 1. The output-error state-space model identification class of algorithms
    • Verhaegen, M. and DeWilde, P., Subspace model identification part 1. The output-error state-space model identification class of algorithms, Int. J. Control, 56, 1187-1210, 1992.
    • (1992) Int. J. Control , vol.56 , pp. 1187-1210
    • Verhaegen, M.1    DeWilde, P.2
  • 21
    • 0025464263 scopus 로고
    • Structure identification of nonlinear dynamic systems - A survey on input/output approaches
    • Haber, R. and Unbehauen, H., Structure identification of nonlinear dynamic systems - a survey on input/output approaches, Automatica, 26, 651-677, 1990.
    • (1990) Automatica , vol.26 , pp. 651-677
    • Haber, R.1    Unbehauen, H.2
  • 22
    • 0030104350 scopus 로고    scopus 로고
    • The practical application of a nonlinear identification methodology
    • Thomsom, M., Schooling, S. P., and Soufian, M., The practical application of a nonlinear identification methodology, Control Eng. Prac., 3, 295-306, 1996.
    • (1996) Control Eng. Prac. , vol.3 , pp. 295-306
    • Thomsom, M.1    Schooling, S.P.2    Soufian, M.3
  • 23
    • 0026010301 scopus 로고
    • Disection of a nonlinear cascade model for sensory encoding
    • French, A. S. and Korenberg, M. J., Disection of a nonlinear cascade model for sensory encoding, Ann. Biomed. Eng., 19, 473-484, 1991.
    • (1991) Ann. Biomed. Eng. , vol.19 , pp. 473-484
    • French, A.S.1    Korenberg, M.J.2
  • 25
    • 0025949282 scopus 로고
    • The interpretation of kernels - An overview
    • Hung, G. K. and Stark, L. W., The interpretation of kernels - an overview, Ann. Biomed. Eng., 19, 509-519, 1991.
    • (1991) Ann. Biomed. Eng. , vol.19 , pp. 509-519
    • Hung, G.K.1    Stark, L.W.2
  • 26
    • 0026045009 scopus 로고
    • Interpretation of functional series expansions
    • Krenz, W. and Stark, L., Interpretation of functional series expansions, Ann. Biomed. Eng., 19, 485-508, 1991.
    • (1991) Ann. Biomed. Eng. , vol.19 , pp. 485-508
    • Krenz, W.1    Stark, L.2
  • 28
    • 0018861202 scopus 로고
    • A method of nonlinear analysis in the frequency domain
    • Victor, J. and Shapley, R., A method of nonlinear analysis in the frequency domain, Biophys. J., 29, 459-484, 1980.
    • (1980) Biophys. J. , vol.29 , pp. 459-484
    • Victor, J.1    Shapley, R.2
  • 30
    • 0000661335 scopus 로고
    • The use of functionals in the analysis of non-linear physical systems
    • Barrett, J. F., The use of functionals in the analysis of non-linear physical systems, J. Electron. Control, 15, 567-615, 1963.
    • (1963) J. Electron. Control , vol.15 , pp. 567-615
    • Barrett, J.F.1
  • 31
    • 0024685547 scopus 로고
    • Identification of MIMO non-linear systems using a forward-regression orthogonal estimator
    • Billings, S. A., Chen, S., and Korenberg, M. J., Identification of MIMO non-linear systems using a forward-regression orthogonal estimator, Int. J. Control, 49, 2157-2189, 1989.
    • (1989) Int. J. Control , vol.49 , pp. 2157-2189
    • Billings, S.A.1    Chen, S.2    Korenberg, M.J.3
  • 32
    • 0000889739 scopus 로고
    • Identification of continuous time nonlinear systems using delayed state variable filters
    • Tsang, T. S. and Billings, S. A., Identification of continuous time nonlinear systems using delayed state variable filters, Int. J. Control, 60, 159-180, 1994.
    • (1994) Int. J. Control , vol.60 , pp. 159-180
    • Tsang, T.S.1    Billings, S.A.2
  • 34
    • 0030836958 scopus 로고    scopus 로고
    • On the relation between continuous and discrete nonlinear parametric models
    • Zhao, X. and Marmarelis, V. Z., On the relation between continuous and discrete nonlinear parametric models, Automatica, 33, 81-84, 1997.
    • (1997) Automatica , vol.33 , pp. 81-84
    • Zhao, X.1    Marmarelis, V.Z.2
  • 36
    • 0023893212 scopus 로고
    • Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm
    • Korenberg, M. J., Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm, Ann. Biomed. Eng., 16, 123-142, 1988.
    • (1988) Ann. Biomed. Eng. , vol.16 , pp. 123-142
    • Korenberg, M.J.1
  • 37
    • 0020729886 scopus 로고
    • Two-sided linear filter identification
    • Hunter, I. W. and Kearney, R. E., Two-sided linear filter identification, Med. Biol. Eng. Comput., 21, 203-209, 1983.
    • (1983) Med. Biol. Eng. Comput. , vol.21 , pp. 203-209
    • Hunter, I.W.1    Kearney, R.E.2
  • 39
    • 0022150259 scopus 로고
    • Fading memory and the problem of approximating nonlinear operators with Volterra series
    • Boyd, S. and Chua, L. O., Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Trans. Circ. Syst., CAS-32, 1150-1161, 1985.
    • (1985) IEEE Trans. Circ. Syst. , vol.CAS-32 , pp. 1150-1161
    • Boyd, S.1    Chua, L.O.2
  • 41
    • 0022118046 scopus 로고
    • An improvement of the Lee and Schetzen cross-correlation method
    • Goussard, Y., Krenz, W. C., and Stark, L., An improvement of the Lee and Schetzen cross-correlation method, IEEE Trans. Automatic Control, 30, 895-898, 1985.
    • (1985) IEEE Trans. Automatic Control , vol.30 , pp. 895-898
    • Goussard, Y.1    Krenz, W.C.2    Stark, L.3
  • 42
    • 0005483993 scopus 로고
    • The Volterra representation and the Wiener expansion: Validity and pitfalls
    • Palm, G. and Poggio, T., The Volterra representation and the Wiener expansion: validity and pitfalls, SIAM J. Appl. Math., 33, 195-216, 1977.
    • (1977) SIAM J. Appl. Math. , vol.33 , pp. 195-216
    • Palm, G.1    Poggio, T.2
  • 45
    • 0022960073 scopus 로고
    • The identification of nonlinear biological systems: Wiener and Hammerstein cascade models
    • Hunter, I. W. and Korenberg, M. J., The identification of nonlinear biological systems: Wiener and Hammerstein cascade models, Biol. Cybern., 55, 135-144, 1986.
    • (1986) Biol. Cybern. , vol.55 , pp. 135-144
    • Hunter, I.W.1    Korenberg, M.J.2
  • 46
    • 0022962525 scopus 로고
    • The identification of nonlinear biological systems: LNL cascade models
    • Korenberg, M. J. and Hunter, I. W., The identification of nonlinear biological systems: LNL cascade models, Biol. Cybern., 55, 125-134, 1986.
    • (1986) Biol. Cybern. , vol.55 , pp. 125-134
    • Korenberg, M.J.1    Hunter, I.W.2
  • 47
    • 0018674397 scopus 로고
    • On representation and approximation of nonlinear systems
    • Palm, G., On representation and approximation of nonlinear systems, Biol. Cybern., 34, 49-52, 1979.
    • (1979) Biol. Cybern. , vol.34 , pp. 49-52
    • Palm, G.1
  • 48
    • 0026047591 scopus 로고
    • Parallel cascade identification and kernel estimation for nonlinear systems
    • Korenberg, M. J., Parallel cascade identification and kernel estimation for nonlinear systems, Ann. Biomed. Eng., 19, 429-455, 1991.
    • (1991) Ann. Biomed. Eng. , vol.19 , pp. 429-455
    • Korenberg, M.J.1
  • 49
    • 0024504036 scopus 로고
    • Signal transformation and coding in neural systems
    • Marmarelis, V. Z., Signal transformation and coding in neural systems, IEEE Trans. Biomed. Eng., 36, 15-24, 1989.
    • (1989) IEEE Trans. Biomed. Eng. , vol.36 , pp. 15-24
    • Marmarelis, V.Z.1
  • 50
    • 0027420259 scopus 로고
    • A method for constructing data-based models of spiking neurons using a dynamic linear-static nonlinear cascade
    • Paulin, M. G., A method for constructing data-based models of spiking neurons using a dynamic linear-static nonlinear cascade, Biol. Cybern., 69, 67-76, 1993.
    • (1993) Biol. Cybern. , vol.69 , pp. 67-76
    • Paulin, M.G.1
  • 51
    • 0028745482 scopus 로고
    • Use of eigenvector expansions in generalized Wiener system models
    • 50a. Westwick, D. T. and Kearney, R. E., Use of eigenvector expansions in generalized Wiener system models, Proc. IEEE EMBS, 16, 1328-1329, 1994.
    • (1994) Proc. IEEE EMBS , vol.16 , pp. 1328-1329
    • Westwick, D.T.1    Kearney, R.E.2
  • 53
    • 0016136829 scopus 로고
    • Identification of multi-input biological systems
    • Marmarelis, P. Z. and Naka, K. I., Identification of multi-input biological systems, IEEE Trans. Biomed. Eng., BME-21, 88-101, 1974.
    • (1974) IEEE Trans. Biomed. Eng. , vol.BME-21 , pp. 88-101
    • Marmarelis, P.Z.1    Naka, K.I.2
  • 54
    • 0018654777 scopus 로고
    • Spatio-temporal receptive field measurement of retinal neurons by random pattern stimulation and cross correlation
    • Yasui, S., David, W., and Naka, K.-I., Spatio-temporal receptive field measurement of retinal neurons by random pattern stimulation and cross correlation, IEEE Trans. Biomed. Eng., BME-26, 263-272, 1979.
    • (1979) IEEE Trans. Biomed. Eng. , vol.BME-26 , pp. 263-272
    • Yasui, S.1    David, W.2    Naka, K.-I.3
  • 55
    • 0029757872 scopus 로고    scopus 로고
    • Identifying MIMO Hammerstein systems in the context of subspace model identification methods
    • Verhaegen, M. and Westwick, D., Identifying MIMO Hammerstein systems in the context of subspace model identification methods, Int. J. Control, 63, 331-349, 1996.
    • (1996) Int. J. Control , vol.63 , pp. 331-349
    • Verhaegen, M.1    Westwick, D.2
  • 56
    • 0029184531 scopus 로고
    • Modeling and identification of parallel nonlinear systems: Structural classification and parameter estimation methods
    • Chen, H. W., Modeling and identification of parallel nonlinear systems: Structural classification and parameter estimation methods, Proc. IEEE, 83, 39-66, 1995.
    • (1995) Proc. IEEE , vol.83 , pp. 39-66
    • Chen, H.W.1
  • 57
    • 0025033348 scopus 로고
    • Structural classification of multi-input nonlinear systems
    • Chen, H. W., Jacobsen, L. D., and Gaska, J. P., Structural classification of multi-input nonlinear systems, Biol. Cybern., 63, 341-357, 1990.
    • (1990) Biol. Cybern. , vol.63 , pp. 341-357
    • Chen, H.W.1    Jacobsen, L.D.2    Gaska, J.P.3
  • 58
    • 0030197651 scopus 로고    scopus 로고
    • Identifying MIMO Wiener systems using subspace model identification methods
    • Westwick, D. and Verhaegen, M., Identifying MIMO Wiener systems using subspace model identification methods, Sig. Proc., 52, 235-258, 1996.
    • (1996) Sig. Proc. , vol.52 , pp. 235-258
    • Westwick, D.1    Verhaegen, M.2
  • 59
    • 0027015915 scopus 로고
    • A new algorithm for the identification of multiple-input Wiener systems
    • Westwick, D. T. and Kearney, R. E., A new algorithm for the identification of multiple-input Wiener systems, Biol. Cybern., 68, 75-85, 1992.
    • (1992) Biol. Cybern. , vol.68 , pp. 75-85
    • Westwick, D.T.1    Kearney, R.E.2
  • 60
    • 0022321501 scopus 로고
    • Identifying noisy cascades of linear and static nonlinear systems
    • Korenberg, M. J., Identifying noisy cascades of linear and static nonlinear systems, IFAC Symp. Idem. Syst. Param. Est., 4, 421-426, 1985.
    • (1985) IFAC Symp. Idem. Syst. Param. Est. , vol.4 , pp. 421-426
    • Korenberg, M.J.1
  • 61
    • 0014566119 scopus 로고
    • The pupillary control system, its nonlinear adaptive and stochastic engineering design characteristics
    • Stark, L., The pupillary control system, its nonlinear adaptive and stochastic engineering design characteristics, Automatica, 5, 655-676, 1969.
    • (1969) Automatica , vol.5 , pp. 655-676
    • Stark, L.1
  • 62
    • 0001085145 scopus 로고
    • Determination of nonlinear functional response functions in rainfall runoff processes
    • Amorocho, J. and Brandstetter, A., Determination of nonlinear functional response functions in rainfall runoff processes, Water Resources Research, 7, 1087-1101, 1971.
    • (1971) Water Resources Research , vol.7 , pp. 1087-1101
    • Amorocho, J.1    Brandstetter, A.2
  • 63
    • 0031105344 scopus 로고    scopus 로고
    • Identification of physiological systems: A robust method for non-parametric impulse response estimation
    • Westwick, D. T. and Kearney, R. E., Identification of physiological systems: A robust method for non-parametric impulse response estimation, Med. Biol. Eng. Comput., 35, 83-90, 1997.
    • (1997) Med. Biol. Eng. Comput. , vol.35 , pp. 83-90
    • Westwick, D.T.1    Kearney, R.E.2
  • 64
    • 0015600163 scopus 로고
    • Measuring the Wiener kernels of a non-linear system using the fast Fourier transform algorithm
    • French A. S. and Butz, E. G., Measuring the Wiener kernels of a non-linear system using the fast Fourier transform algorithm, Int. J. Control, 17, 529-539, 1973.
    • (1973) Int. J. Control , vol.17 , pp. 529-539
    • French, A.S.1    Butz, E.G.2
  • 65
    • 0017105288 scopus 로고
    • Practical nonlinear system analysis by Wiener kernel estimation in the frequency domain
    • French, A. S., Practical nonlinear system analysis by Wiener kernel estimation in the frequency domain, Biol. Cybern., 24, 111-119, 1976.
    • (1976) Biol. Cybern. , vol.24 , pp. 111-119
    • French, A.S.1
  • 66
    • 0023820865 scopus 로고
    • Exact orthogonal kernel estimation from finite data records: Extending Wiener's identification of nonlinear systems
    • Korenberg, M. J., Bruder, S. B., and McDroy, P. J., Exact orthogonal kernel estimation from finite data records: Extending Wiener's identification of nonlinear systems, Ann. Biomed. Eng., 16, 201-214, 1988.
    • (1988) Ann. Biomed. Eng. , vol.16 , pp. 201-214
    • Korenberg, M.J.1    Bruder, S.B.2    McDroy, P.J.3
  • 69
    • 0031965221 scopus 로고    scopus 로고
    • Factors affecting Volterra kernel estimation: Emphasis on lung tissue viscoelaslicity
    • to appear
    • Zhang, Q., Suki, B., Westwick, D. T., and Lutchen, K. R., Factors affecting Volterra kernel estimation: Emphasis on lung tissue viscoelaslicity, Ann. Biomed Eng., 1998; to appear 26(1).
    • (1998) Ann. Biomed Eng. , vol.26 , Issue.1
    • Zhang, Q.1    Suki, B.2    Westwick, D.T.3    Lutchen, K.R.4
  • 70
    • 0026187058 scopus 로고
    • Adaptive polynomial filters
    • July
    • Mathews, V. J., Adaptive polynomial filters, IEEE Sig. Proc. Mag., July, 10-26, 1991.
    • (1991) IEEE Sig. Proc. Mag. , pp. 10-26
    • Mathews, V.J.1
  • 71
  • 73
    • 0025917822 scopus 로고
    • Practical identification of functional expansions of nonlinear systems submitted to non-Gaussian inputs
    • Goussard, Y., Krenz, W. C., Stark, L., and Demoment, G., Practical identification of functional expansions of nonlinear systems submitted to non-Gaussian inputs, Ann. Biomed. Eng., 19, 401-427, 1991.
    • (1991) Ann. Biomed. Eng. , vol.19 , pp. 401-427
    • Goussard, Y.1    Krenz, W.C.2    Stark, L.3    Demoment, G.4
  • 74
    • 0016817967 scopus 로고
    • Kernel method for nonlinear analysis: Identification of a biological control system
    • Watanabe, A. and Stark, L., Kernel method for nonlinear analysis: identification of a biological control system, Math. Biosci., 27, 99-108, 1975.
    • (1975) Math. Biosci. , vol.27 , pp. 99-108
    • Watanabe, A.1    Stark, L.2
  • 75
    • 0027688143 scopus 로고
    • Identification of nonlinear biological systems using Laguerre expansions of kernels
    • Marmarelis, V. Z., Identification of nonlinear biological systems using Laguerre expansions of kernels, Ann. Biomed. Eng., 21, 573-589, 1993.
    • (1993) Ann. Biomed. Eng. , vol.21 , pp. 573-589
    • Marmarelis, V.Z.1
  • 77
    • 0008849668 scopus 로고
    • Estimation of Wiener kernels of a nonlinear system and fast algorithm using digital Laguerre filters
    • Ogura, H., Estimation of Wiener kernels of a nonlinear system and fast algorithm using digital Laguerre filters, NIBB Conf., 15, 14-62, 1986.
    • (1986) NIBB Conf. , vol.15 , pp. 14-62
    • Ogura, H.1
  • 78
    • 0032067588 scopus 로고    scopus 로고
    • Sensitivity analysis of kernel estimates: Implications in nonlinear physiological system identification
    • Westwick, D. T., Suki, B., and Lutchen, K. R., Sensitivity analysis of kernel estimates: Implications in nonlinear physiological system identification, Ann. Biomed. Eng., 26, 488-501, 1998.
    • (1998) Ann. Biomed. Eng. , vol.26 , pp. 488-501
    • Westwick, D.T.1    Suki, B.2    Lutchen, K.R.3
  • 79
    • 0027689335 scopus 로고
    • Modeling of neuronal systems by use of neuronal modes
    • Marmarelis, V. Z. and Orme, M. E., Modeling of neuronal systems by use of neuronal modes, IEEE Trans. Biomed. Eng., 40, 1149-1158, 1993.
    • (1993) IEEE Trans. Biomed. Eng. , vol.40 , pp. 1149-1158
    • Marmarelis, V.Z.1    Orme, M.E.2
  • 81
    • 0029392425 scopus 로고
    • Nonlinear neuronal mode analysis of action potential encoding an the cockroach tactile spine neuron
    • French, A. S. and Marmarelis, V. Z., Nonlinear neuronal mode analysis of action potential encoding an the cockroach tactile spine neuron, Biol. Cybern., 73, 425-430, 1995.
    • (1995) Biol. Cybern. , vol.73 , pp. 425-430
    • French, A.S.1    Marmarelis, V.Z.2
  • 82
    • 0004128622 scopus 로고
    • Crosscorrelation functions of amplitude-distorted Gaussian signals
    • MIT Electrical Research Lab
    • Bussgang, J. J., Crosscorrelation functions of amplitude-distorted Gaussian signals, Technical Report 216, MIT Electrical Research Lab, 1952.
    • (1952) Technical Report , vol.216
    • Bussgang, J.J.1
  • 83
    • 85069347872 scopus 로고
    • Identification of biological cascades of linear and static nonlinear elements
    • 18.2
    • Korenberg, M. J., Identification of biological cascades of linear and static nonlinear elements, Proc. Midwest Symp. Circ. Theory, 18.2, 1-9, 1973.
    • (1973) Proc. Midwest Symp. Circ. Theory , pp. 1-9
    • Korenberg, M.J.1
  • 84
    • 0026372989 scopus 로고
    • Recent advances in the identification of nonlinear sytems: Minimum-variance approximation by Hammerstein models
    • Korenberg, M. J., Recent advances in the identification of nonlinear sytems: minimum-variance approximation by Hammerstein models, Proc. IEEE EMBS, 13, 2258-2259, 1991.
    • (1991) Proc. IEEE EMBS , vol.13 , pp. 2258-2259
    • Korenberg, M.J.1
  • 85
    • 0028539254 scopus 로고
    • Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model
    • Wigren, T., Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model, IEEE Trans. Automatic Control, 39, 2191-2206, 1994.
    • (1994) IEEE Trans. Automatic Control , vol.39 , pp. 2191-2206
    • Wigren, T.1
  • 86
    • 0014641949 scopus 로고
    • Rectification in the goldfish retina: Analysis by sinusoidal and auxiliary stimulation
    • Spekreijse, H., Rectification in the goldfish retina: analysis by sinusoidal and auxiliary stimulation, Vis. Res., 9, 1461-1472, 1969.
    • (1969) Vis. Res. , vol.9 , pp. 1461-1472
    • Spekreijse, H.1
  • 87
    • 0014768673 scopus 로고
    • Linearizing: A method for analyzing and synthesizing nonlinear systems
    • Spekreijse, H. and Oosting, J., Linearizing: a method for analyzing and synthesizing nonlinear systems, Kybernetik, 7, 23-31, 1970.
    • (1970) Kybernetik , vol.7 , pp. 23-31
    • Spekreijse, H.1    Oosting, J.2
  • 89
    • 0346135786 scopus 로고
    • Obtaining differential equation, functional expansion or cascade representations for nonlinear biological systems
    • Korenberg, M. J., Obtaining differential equation, functional expansion or cascade representations for nonlinear biological systems, Proc. N. Engl. Bioeng. Conf., 1, 237-245, 1973.
    • (1973) Proc. N. Engl. Bioeng. Conf. , vol.1 , pp. 237-245
    • Korenberg, M.J.1
  • 90
    • 0019899613 scopus 로고
    • Identification of systems containing linear dynamic and static nonlinear elements
    • Billings, S. A. and Fakhouri, S. Y., Identification of systems containing linear dynamic and static nonlinear elements, Automatica, 18, 15-26, 1982.
    • (1982) Automatica , vol.18 , pp. 15-26
    • Billings, S.A.1    Fakhouri, S.Y.2
  • 91
    • 0020887896 scopus 로고
    • Statistical identification of parallel cascades of linear and nonlinear systems
    • Korenberg, M. J., Statistical identification of parallel cascades of linear and nonlinear systems, IFAC Symp. Idem. Syst. Param. Est, 1, 669-674, 1982.
    • (1982) IFAC Symp. Idem. Syst. Param. Est , vol.1 , pp. 669-674
    • Korenberg, M.J.1
  • 92
    • 0025441256 scopus 로고
    • Nonlinear system identification for cascaded block model: An application to electrode polarization impedance
    • Shi, J. and Sun, H. H., Nonlinear system identification for cascaded block model: An application to electrode polarization impedance, IEEE Trans. Biomed. Eng., 37, 574-587, 1990.
    • (1990) IEEE Trans. Biomed. Eng. , vol.37 , pp. 574-587
    • Shi, J.1    Sun, H.H.2
  • 94
    • 0023746985 scopus 로고
    • White-noise analysis of nonlinear behavior in an insect sensory neuron: Kernel and cascade approaches
    • Korenberg, M. J., French, A. S., and Voo, S. K. L., White-noise analysis of nonlinear behavior in an insect sensory neuron: kernel and cascade approaches, Biol. Cybern., 58, 313-320, 1988.
    • (1988) Biol. Cybern. , vol.58 , pp. 313-320
    • Korenberg, M.J.1    French, A.S.2    Voo, S.K.L.3
  • 95
    • 0024653739 scopus 로고
    • A nonlinear cascade model for action potential encoding in an insect sensory neuron
    • French, A. S. and Korenberg, M. J., A nonlinear cascade model for action potential encoding in an insect sensory neuron, Biophys. J., 55, 655-661, 1989.
    • (1989) Biophys. J. , vol.55 , pp. 655-661
    • French, A.S.1    Korenberg, M.J.2
  • 96
    • 0027209287 scopus 로고
    • The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities
    • French, A. S., Korenberg, M. J., Jarvilehto, M., Kouvalainen, E., Juusola, M., and Weckstrom, M., The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities, Biophys. J., 65, 832-839, 1993.
    • (1993) Biophys. J. , vol.65 , pp. 832-839
    • French, A.S.1    Korenberg, M.J.2    Jarvilehto, M.3    Kouvalainen, E.4    Juusola, M.5    Weckstrom, M.6
  • 98
    • 0031239123 scopus 로고    scopus 로고
    • Generalized eigenvector algorithm for nonlinear system identification with non-white inputs
    • Westwick, D. T. and Kearney, R. E., Generalized eigenvector algorithm for nonlinear system identification with non-white inputs, Ann. Biomed. Eng., 25, 802-814, 1997.
    • (1997) Ann. Biomed. Eng. , vol.25 , pp. 802-814
    • Westwick, D.T.1    Kearney, R.E.2
  • 99
    • 0021587828 scopus 로고
    • Statistical identification of Volterra kernels of high order systems
    • Korenberg, M. J., Statistical identification of Volterra kernels of high order systems, IEEE Symp. Circ. Syst., 2, 570-575, 1984.
    • (1984) IEEE Symp. Circ. Syst. , vol.2 , pp. 570-575
    • Korenberg, M.J.1
  • 101
    • 0346766326 scopus 로고
    • Identification of high-order nonlinear systems using the parallel cascade method
    • Westwick, D. T. and Kearney, R. E., Identification of high-order nonlinear systems using the parallel cascade method, Proc. Can. Med. Biol. Eng. Conf., 19, 200-201, 1993.
    • (1993) Proc. Can. Med. Biol. Eng. Conf. , vol.19 , pp. 200-201
    • Westwick, D.T.1    Kearney, R.E.2
  • 103
    • 0031106083 scopus 로고    scopus 로고
    • Modeling methodology for nonlinear physiological systems
    • Marmarelis, V. Z., Modeling methodology for nonlinear physiological systems, Ann. Biomed. Eng., 25, 239-251, 1997.
    • (1997) Ann. Biomed. Eng. , vol.25 , pp. 239-251
    • Marmarelis, V.Z.1
  • 104
    • 0027665717 scopus 로고
    • Subspace-based signal analysis using singular value decomposition
    • van der Veen, A. J., Deprettere, F., and Swindlehurst, A. L., Subspace-based signal analysis using singular value decomposition, Proc. IEEE, 81, 1277-1308, 1993.
    • (1993) Proc. IEEE , vol.81 , pp. 1277-1308
    • Van Der Veen, A.J.1    Deprettere, F.2    Swindlehurst, A.L.3
  • 105
    • 0027589792 scopus 로고
    • Subspace algorithms for the stochastic identification problem
    • van Overschee, P. and de Moor, B., Subspace algorithms for the stochastic identification problem, Automatica, 29, 649-660, 1993.
    • (1993) Automatica , vol.29 , pp. 649-660
    • Van Overschee, P.1    De Moor, B.2
  • 106
    • 0028330583 scopus 로고
    • N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems
    • van Overschee, P. and de Moor, B., N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems, Automatica, 30, 75-93, 1994.
    • (1994) Automatica , vol.30 , pp. 75-93
    • Van Overschee, P.1    De Moor, B.2
  • 107
    • 0041972974 scopus 로고
    • Subspace model identification part 3. Analysis of the ordinary output-error state-space model identification algorithm
    • Verhaegen, M., Subspace model identification part 3. Analysis of the ordinary output-error state-space model identification algorithm, Int. J. Control, 58, 555-586, 1993.
    • (1993) Int. J. Control , vol.58 , pp. 555-586
    • Verhaegen, M.1
  • 108
    • 0028330582 scopus 로고
    • Identification of the deterministic part of MIMO state space models given in innovations form from input-output data
    • Verhaegen, M., Identification of the deterministic part of MIMO state space models given in innovations form from input-output data, Automatica, 30, 61-74, 1994.
    • (1994) Automatica , vol.30 , pp. 61-74
    • Verhaegen, M.1
  • 109
    • 0001624280 scopus 로고
    • Subspace identification part 2. Analysis of the elementary output-error state-space model identification algorithm
    • Verhaegen, M. and De Wilde, P., Subspace identification part 2. Analysis of the elementary output-error state-space model identification algorithm, Int. J. Control, 56, 1211-1241, 1992.
    • (1992) Int. J. Control , vol.56 , pp. 1211-1241
    • Verhaegen, M.1    De Wilde, P.2
  • 110
    • 0030534303 scopus 로고    scopus 로고
    • A subspace model identification solution to the identification of mixed causal, anti-causal LTI systems
    • Verhaegen, M., A subspace model identification solution to the identification of mixed causal, anti-causal LTI systems, SIAM J. Matrix Anal. Appl., 17, 332-347, 1996.
    • (1996) SIAM J. Matrix Anal. Appl. , vol.17 , pp. 332-347
    • Verhaegen, M.1
  • 111
    • 0029247727 scopus 로고
    • A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems
    • Verhaegen, M. and Yu, X., A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems, Automatica, 31, 201-216, 1995.
    • (1995) Automatica , vol.31 , pp. 201-216
    • Verhaegen, M.1    Yu, X.2
  • 112
    • 0029322274 scopus 로고
    • Fast subspace-based system identification: An instrumental variable approach
    • Cho, Y. M. and Kailath, T., Fast subspace-based system identification: An instrumental variable approach, Automatica, 31, 903-905, 1995.
    • (1995) Automatica , vol.31 , pp. 903-905
    • Cho, Y.M.1    Kailath, T.2
  • 113
    • 0028527731 scopus 로고
    • Fast identification of state-space models via exploitation of displacement structure
    • Cho, Y. M., Xu, G., and Kailath, T., Fast identification of state-space models via exploitation of displacement structure, IEEE Trans. Automatic Control, 39, 2004-2017, 1994.
    • (1994) IEEE Trans. Automatic Control , vol.39 , pp. 2004-2017
    • Cho, Y.M.1    Xu, G.2    Kailath, T.3
  • 114
    • 0347396848 scopus 로고    scopus 로고
    • An efficient implementation of the PI subspace state-space system identification algorithm
    • Westwick, D. T., Kearney, R. E., and Verhaegen, M. H., An efficient implementation of the PI subspace state-space system identification algorithm, Proc. IEEE EMBS, 18, 690, 1996.
    • (1996) Proc. IEEE EMBS , vol.18 , pp. 690
    • Westwick, D.T.1    Kearney, R.E.2    Verhaegen, M.H.3
  • 115
    • 0024631931 scopus 로고
    • Representation of non-linear systems: The NARMAX model
    • Chen, S. and Billings S. A., Representation of non-linear systems: the NARMAX model, Int. J. Control 49, 1013-1032, 1989.
    • (1989) Int. J. Control , vol.49 , pp. 1013-1032
    • Chen, S.1    Billings, S.A.2
  • 116
    • 0022011031 scopus 로고
    • Input-output parametric models for non-linear systems part I: Deterministic non-linear systems
    • Leontaritis, I. J. and Billings, S. A., Input-output parametric models for non-linear systems part I: deterministic non-linear systems, Int. J. Control, 41, 303-328, 1985.
    • (1985) Int. J. Control , vol.41 , pp. 303-328
    • Leontaritis, I.J.1    Billings, S.A.2
  • 117
    • 0022011215 scopus 로고
    • Input-output parametric models for non-linear systems part II: Stochastic non-linear systems
    • Leontaritis, I. J. and Billings, S. A., Input-output parametric models for non-linear systems part II: stochastic non-linear systems, Int. J. Control 41, 329-344, 1985.
    • (1985) Int. J. Control , vol.41 , pp. 329-344
    • Leontaritis, I.J.1    Billings, S.A.2
  • 118
    • 0024628610 scopus 로고
    • Identification of non-linear rational systems using a prediction-error estimation algorithm
    • Billings, S. A. and Chen, S., Identification of non-linear rational systems using a prediction-error estimation algorithm, Int. J. Syst. Sci., 20, 467-494, 1989.
    • (1989) Int. J. Syst. Sci. , vol.20 , pp. 467-494
    • Billings, S.A.1    Chen, S.2
  • 120
    • 0031238599 scopus 로고    scopus 로고
    • Application of fast orthogonal search to linear and nonlinear stochastic systems
    • 118a. Chon, K. H., Korenberg, M. J., and Holstein-Rathlou, N.-H., Application of fast orthogonal search to linear and nonlinear stochastic systems, Ann. Biomed. Eng., 25, 793-801, 1997.
    • (1997) Ann. Biomed. Eng. , vol.25 , pp. 793-801
    • Chon, K.H.1    Korenberg, M.J.2    Holstein-Rathlou, N.-H.3
  • 121
    • 0346766321 scopus 로고
    • Orthogonal least-squares parameter estimation algorithms for non-linear stochastic systems
    • Billings, S. A. and Jones, G. N., Orthogonal least-squares parameter estimation algorithms for non-linear stochastic systems, Int. J. Syst. Sci., 23, 1019-1032, 1992.
    • (1992) Int. J. Syst. Sci. , vol.23 , pp. 1019-1032
    • Billings, S.A.1    Jones, G.N.2
  • 122
    • 0024067409 scopus 로고
    • Identification of non-linear output-affine systems using an orthogonal least-squares algorithm
    • Billings, S. A., Korenberg, M. J., and Chen, S., Identification of non-linear output-affine systems using an orthogonal least-squares algorithm, Int. J. Syst. Sci., 19, 1559-1568, 1988.
    • (1988) Int. J. Syst. Sci. , vol.19 , pp. 1559-1568
    • Billings, S.A.1    Korenberg, M.J.2    Chen, S.3
  • 123
    • 0024487978 scopus 로고
    • A robust orthogonal algorithm for system identification and time series analysis
    • Korenberg, M. J., A robust orthogonal algorithm for system identification and time series analysis, Biol. Cybern., 60, 267-276, 1989.
    • (1989) Biol. Cybern. , vol.60 , pp. 267-276
    • Korenberg, M.J.1
  • 124
    • 0031224757 scopus 로고    scopus 로고
    • Algorithms for minimal model structure detection in nonlinear dynamic system identification
    • 121a. Mao, K. Z. and Billings, S. A., Algorithms for minimal model structure detection in nonlinear dynamic system identification, Int. J. Control 68, 311-330, 1997.
    • (1997) Int. J. Control , vol.68 , pp. 311-330
    • Mao, K.Z.1    Billings, S.A.2
  • 125
    • 0016922842 scopus 로고
    • On least-squares algorithms for system parameter identification
    • Hsia, T. C., On least-squares algorithms for system parameter identification, IEEE Trans. Automatic Control, 21, 104-108, 1976.
    • (1976) IEEE Trans. Automatic Control , vol.21 , pp. 104-108
    • Hsia, T.C.1
  • 128
    • 0028733792 scopus 로고
    • Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network
    • Wray, J. and Green, G. G. R., Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network, Biol. Cybern., 71, 187-195, 1994.
    • (1994) Biol. Cybern. , vol.71 , pp. 187-195
    • Wray, J.1    Green, G.G.R.2
  • 129
    • 0025448276 scopus 로고
    • Non-linear system identification using neural networks
    • Chen, S., Billings, S. A., and Grant, P. M., Non-linear system identification using neural networks, Int. J. Control, 51, 1191-1214, 1990.
    • (1990) Int. J. Control , vol.51 , pp. 1191-1214
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 130
    • 0022787109 scopus 로고
    • A prediction-error and stepwise-regression estimation algorithm for non-linear systems
    • Billings, S. A. and Voon, W. S. F., A prediction-error and stepwise-regression estimation algorithm for non-linear systems, Int. J. Control, 44, 803-822, 1986.
    • (1986) Int. J. Control , vol.44 , pp. 803-822
    • Billings, S.A.1    Voon, W.S.F.2
  • 132
    • 0031106678 scopus 로고    scopus 로고
    • Linear and nonlinear ARMA model parameter estimation using an artificial neural network
    • Chon, K. H. and Cohen, R. J., Linear and nonlinear ARMA model parameter estimation using an artificial neural network, IEEE Trans. Biomed. Eng., 44, 168-174, 1997.
    • (1997) IEEE Trans. Biomed. Eng. , vol.44 , pp. 168-174
    • Chon, K.H.1    Cohen, R.J.2
  • 133
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, S., Cowan, C. F. N., and Grant, P. M., Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neur. Net., 2, 302-309, 1991.
    • (1991) IEEE Trans. Neur. Net. , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 134
    • 84950967431 scopus 로고
    • Non-linear systems identification using radial basis functions
    • Chen, S., Billings, S. A., Cowan, C. F. N., and Grant, P. M., Non-linear systems identification using radial basis functions, Int. J. Syst. Sci., 21, 2513-2539, 1990.
    • (1990) Int. J. Syst. Sci. , vol.21 , pp. 2513-2539
    • Chen, S.1    Billings, S.A.2    Cowan, C.F.N.3    Grant, P.M.4
  • 135
    • 0025669403 scopus 로고
    • Practical identification of NARMAX models using radial basis functions
    • Chen, S., Billings, S. A., Cowan, C. F. N., and Grant, P. M., Practical identification of NARMAX models using radial basis functions, Int. J. Control, 52, 1327-1350, 1990.
    • (1990) Int. J. Control , vol.52 , pp. 1327-1350
    • Chen, S.1    Billings, S.A.2    Cowan, C.F.N.3    Grant, P.M.4
  • 136
    • 84947626826 scopus 로고
    • Recursive hybrid algorithm for non-linear system identification using radial basis function networks
    • Chen, S., Billings, S. A., and Grant, P. M., Recursive hybrid algorithm for non-linear system identification using radial basis function networks, Int. J. Control, 55, 1051-1070, 1992.
    • (1992) Int. J. Control , vol.55 , pp. 1051-1070
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.