-
1
-
-
0000713592
-
Maximum entropy spectral analysis
-
Ables J. G. Maximum entropy spectral analysis. Astronomy and Astrophysics. 15 (Suppl.):1974;383-393.
-
(1974)
Astronomy and Astrophysics
, vol.15
, Issue.SUPPL.
, pp. 383-393
-
-
Ables, J.G.1
-
5
-
-
0000495381
-
Robust estimation of the variogram: 1
-
Cressie N. A. C., Hawkins D. M. Robust estimation of the variogram: 1. Mathematical Geology. 12(2):1980;115-125.
-
(1980)
Mathematical Geology
, vol.12
, Issue.2
, pp. 115-125
-
-
Cressie, N.A.C.1
Hawkins, D.M.2
-
6
-
-
0004348943
-
-
EPA/600/4-88/033: U.S. EPA, Las Vegas, Nevada
-
Englund, E. and Sparks, A. (1991) GEO-EAS: Geostatistical Environmental Assessment Software User's Guide. EPA/600/4-88/033: U.S. EPA, Las Vegas, Nevada, 174 pp.
-
(1991)
GEO-EAS: Geostatistical Environmental Assessment Software User's Guide
, pp. 174
-
-
Englund, E.1
Sparks, A.2
-
7
-
-
0029503388
-
The land surface is not unifractal: Variograms, cirque scale and allometry
-
Evans I. E., McClean C. J. The land surface is not unifractal: variograms, cirque scale and allometry. Zeitschrift fur Geomorphologie. 101 (Suppl.):1995;127-147.
-
(1995)
Zeitschrift fur Geomorphologie
, vol.101
, Issue.SUPPL.
, pp. 127-147
-
-
Evans, I.E.1
McClean, C.J.2
-
8
-
-
0003586464
-
-
Plenum, New York
-
Feder, J. (1988) Fractals. Plenum, New York, 283 pp.
-
(1988)
Fractals
, pp. 283
-
-
Feder, J.1
-
9
-
-
0011707214
-
Fractal time series and fractional Brownian motion
-
eds. T. Riste and D. Sherrington, Kluwer, Netherlands
-
Feder, J. (1991) Fractal time series and fractional Brownian motion. In Spontaneous Formation of Space-Time Structures and Criticality, eds. T. Riste and D. Sherrington, pp. 113-135. Kluwer, Netherlands.
-
(1991)
Spontaneous Formation of Space-Time Structures and Criticality
, pp. 113-135
-
-
Feder, J.1
-
10
-
-
0345497159
-
On the accuracy of spectrum analysis of red noise processes using maximum entropy and periodogram methods: Simulation studies and application to geophysical data
-
eds. C. R. Smith and G. J. Erickson, Kluwer, Netherlands
-
Fougere, P. F. (1987) On the accuracy of spectrum analysis of red noise processes using maximum entropy and periodogram methods: simulation studies and application to geophysical data. In Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems, eds. C. R. Smith and G. J. Erickson, pp. 127-148. Kluwer, Netherlands.
-
(1987)
Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems
, pp. 127-148
-
-
Fougere, P.F.1
-
11
-
-
0028571953
-
Estimating fractal dimension of profiles: A comparison of methods
-
Gallant J. C., Moore I. D., Hutchinson M. F. Estimating fractal dimension of profiles: a comparison of methods. Mathematical Geology. 26(4):1994;455-481.
-
(1994)
Mathematical Geology
, vol.26
, Issue.4
, pp. 455-481
-
-
Gallant, J.C.1
Moore, I.D.2
Hutchinson, M.F.3
-
12
-
-
0001406233
-
Are topographic data sets fractal?
-
Gilbert L. E. Are topographic data sets fractal? Pure and Applied Geophysics. 131(1-2):1989;241-254.
-
(1989)
Pure and Applied Geophysics
, vol.131
, Issue.1-2
, pp. 241-254
-
-
Gilbert, L.E.1
-
14
-
-
0029511618
-
Is the ocean floor a fractal?
-
Herzfeld, U. C., Kim, I. I. and Orcutt, J. A. (1995) Is the ocean floor a fractal? Mathematical Geology 27(3), 421 - 462.
-
(1995)
Mathematical Geology
, vol.27
, Issue.3
, pp. 421-462
-
-
Herzfeld, U.C.1
Kim, I.I.2
Orcutt, J.A.3
-
15
-
-
0001232057
-
Spatial continuity measures for probabilistic and deterministic geostatistics
-
Isaaks E. H., Srivastava R. M. Spatial continuity measures for probabilistic and deterministic geostatistics. Mathematical Geology. 20:1988;313-341.
-
(1988)
Mathematical Geology
, vol.20
, pp. 313-341
-
-
Isaaks, E.H.1
Srivastava, R.M.2
-
17
-
-
0028259676
-
A review of methods to determine the fractal dimension of linear features
-
Klinkenberg B. A review of methods to determine the fractal dimension of linear features. Mathematical Geology. 26(1):1994;23-46.
-
(1994)
Mathematical Geology
, vol.26
, Issue.1
, pp. 23-46
-
-
Klinkenberg, B.1
-
19
-
-
0027801793
-
Nonlinear variability of landscape topography: Multifractal analysis and simulation
-
eds. N. S.-N. Lam and L. De Cola, Prentice Hall, Englewood Cliffs, New Jersey
-
Lavallée, D., Lovejoy, S., Schertzer, D. and Ladoy, P. (1993) Nonlinear variability of landscape topography: multifractal analysis and simulation. In Fractals in Geography, eds. N. S.-N. Lam and L. De Cola, pp. 159-192. Prentice Hall, Englewood Cliffs, New Jersey.
-
(1993)
Fractals in Geography
, pp. 159-192
-
-
Lavallée, D.1
Lovejoy, S.2
Schertzer, D.3
Ladoy, P.4
-
21
-
-
0345065662
-
Fractal landscapes without creases and with rivers
-
eds. H.-O. Peitgen and D. Saupe, Springer Verlag, New York
-
Mandelbrot, B. B. (1988) Fractal landscapes without creases and with rivers. In The Science of Fractal Images, eds. H.-O. Peitgen and D. Saupe, pp. 243-260. Springer Verlag, New York.
-
(1988)
The Science of Fractal Images
, pp. 243-260
-
-
Mandelbrot, B.B.1
-
22
-
-
0000501589
-
Fractional Brownian motions, fractional noises and applications
-
Mandelbrot B. B., Van Ness J. W. Fractional Brownian motions, fractional noises and applications. SIAM Review. 10:1968;442.
-
(1968)
SIAM Review
, vol.10
, pp. 442
-
-
Mandelbrot, B.B.1
Van Ness, J.W.2
-
23
-
-
0022928386
-
Choosing functions for semivariograms of soil properties and fitting them to sampling estimates
-
McBratney A. B., Webster R. Choosing functions for semivariograms of soil properties and fitting them to sampling estimates. Journal of Soil Science. 37:1986;617-639.
-
(1986)
Journal of Soil Science
, vol.37
, pp. 617-639
-
-
McBratney, A.B.1
Webster, R.2
-
24
-
-
0024191746
-
Using geostatistics and spectral analysis to study spatial patterns in the topography of southeastern Washington State, U.S.A.
-
Mulla D. J. Using geostatistics and spectral analysis to study spatial patterns in the topography of southeastern Washington State, U.S.A. Earth Surface Processes and Landforms. 13:1988;389-405.
-
(1988)
Earth Surface Processes and Landforms
, vol.13
, pp. 389-405
-
-
Mulla, D.J.1
-
25
-
-
0040471229
-
-
Ph.D. dissertation, Yale University, New Haven, Connecticut
-
Musgrave, F. K. (1993) Methods for realistic landscape imaging. Ph.D. dissertation, Yale University, New Haven, Connecticut, 268 pp.
-
(1993)
Methods for Realistic Landscape Imaging
, pp. 268
-
-
Musgrave, F.K.1
-
26
-
-
0000200189
-
To be or not to be...stationary? That is the question
-
Myers D. E. To be or not to be...stationary? That is the question. Mathematical Geology. 21(3):1989;347-362.
-
(1989)
Mathematical Geology
, vol.21
, Issue.3
, pp. 347-362
-
-
Myers, D.E.1
-
28
-
-
0004161838
-
-
Cambridge University Press, Cambridge
-
Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1989) Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, 702 pp.
-
(1989)
Numerical Recipes: The Art of Scientific Computing
, pp. 702
-
-
Press, W.H.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
30
-
-
0004255480
-
-
Plenum Press, New York
-
Russ, J. C. (1994) Fractal Surfaces. Plenum Press, New York, 309 pp.
-
(1994)
Fractal Surfaces
, pp. 309
-
-
Russ, J.C.1
-
31
-
-
0002981310
-
Algorithms for random fractals
-
eds. H.-O. Peitgen and D. Saupe, Springer Verlag, New York
-
Saupe, D. (1988) Algorithms for random fractals. In The Science of Fractal Images, eds. H.-O. Peitgen and D. Saupe, pp. 71-136. Springer Verlag, New York.
-
(1988)
The Science of Fractal Images
, pp. 71-136
-
-
Saupe, D.1
-
32
-
-
0025477581
-
Approximation of confidence limits on sample semivariograms from single realizations of spatially correlated random fields
-
Shafer J. M., Varljen M. D. Approximation of confidence limits on sample semivariograms from single realizations of spatially correlated random fields. Water Resources Research. 26(8):1990;1787-1802.
-
(1990)
Water Resources Research
, vol.26
, Issue.8
, pp. 1787-1802
-
-
Shafer, J.M.1
Varljen, M.D.2
-
33
-
-
0001703165
-
Particles floating on a moving fluid: A dynamically comprehensible physical fractal
-
Sommerer J. C., Ott E. Particles floating on a moving fluid: a dynamically comprehensible physical fractal. Science. 259:1993;335-339.
-
(1993)
Science
, vol.259
, pp. 335-339
-
-
Sommerer, J.C.1
Ott, E.2
-
34
-
-
0344203472
-
-
Ph.D. dissertation, University of East Anglia, Norwich
-
Tate, N. J. (1995) The fractal dimension of topography. Ph.D. dissertation, University of East Anglia, Norwich, 296 pp.
-
(1995)
The Fractal Dimension of Topography
, pp. 296
-
-
Tate, N.J.1
-
37
-
-
0016473222
-
Maximum entropy spectral analysis and autoregressive decomposition
-
Ulrych T. J., Bishop T. N. Maximum entropy spectral analysis and autoregressive decomposition. Reviews of Geophysics and Space Physics. 13(1):1975;183-200.
-
(1975)
Reviews of Geophysics and Space Physics
, vol.13
, Issue.1
, pp. 183-200
-
-
Ulrych, T.J.1
Bishop, T.N.2
-
38
-
-
0002998107
-
Fractals in nature: From characterization to simulation
-
eds. H.-O. Peitgen and D. Saupe, Springer Verlag, New York
-
Voss, R. F. (1988) Fractals in nature: from characterization to simulation. In The Science of Fractal Images, eds. H.-O. Peitgen and D. Saupe, pp. 21-69. Springer Verlag, New York.
-
(1988)
The Science of Fractal Images
, pp. 21-69
-
-
Voss, R.F.1
-
39
-
-
0024838750
-
On the Akaike information criterion for choosing models for variograms of soil properties
-
Webster R., McBratney A. B. On the Akaike information criterion for choosing models for variograms of soil properties. Journal of Soil Science. 40:1989;493-496.
-
(1989)
Journal of Soil Science
, vol.40
, pp. 493-496
-
-
Webster, R.1
McBratney, A.B.2
|