메뉴 건너뛰기




Volumn 36, Issue 1, 1998, Pages 182-191

A fast two-stage classification method for high-dimensional remote sensing data

Author keywords

Band selection (bs); Canonical analysis (ca); Principal components analysis (pca); Recursive ml classifier (mlc); Winograd's identity

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; FEATURE EXTRACTION; RECURSIVE FUNCTIONS;

EID: 0031646486     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/36.655328     Document Type: Article
Times cited : (58)

References (26)
  • 1
    • 0023823026 scopus 로고    scopus 로고
    • Terrestrial imaging spectroscopy
    • vol. 24, pp. 1-29, 1988.
    • G. Vane and A. F. H. Goetz, Terrestrial imaging spectroscopy Remote Sens. Environ., vol. 24, pp. 1-29, 1988.
    • Remote Sens. Environ.
    • Vane, G.1    Goetz, A.F.H.2
  • 4
    • 0016894696 scopus 로고    scopus 로고
    • Canonical analysis for increased classification speed and channel selection
    • 14, pp. 26-33, 1976.
    • W. Eppler, Canonical analysis for increased classification speed and channel selection IEEE Trans. Geosci. Electron., vol. GE-14, pp. 26-33, 1976.
    • IEEE Trans. Geosci. Electron., Vol. GE
    • Eppler, W.1
  • 5
    • 0015744443 scopus 로고    scopus 로고
    • Two effective feature selection criteria for multispectral remote sensing in
    • 1973, pp. 536-540.
    • P. H. Swain and R. C. King, Two effective feature selection criteria for multispectral remote sensing in Proc. First Int. Joint Conf. Pattern Recognition, 1973, pp. 536-540.
    • Proc. First Int. Joint Conf. Pattern Recognition
    • Swain, P.H.1    King, R.C.2
  • 8
    • 0028403418 scopus 로고    scopus 로고
    • Efficient maximum likelihood classification for imaging spectrometer data sets
    • vol. 32, pp. 274-281, 1994.
    • X. Jia and J. A. Richards, Efficient maximum likelihood classification for imaging spectrometer data sets IEEE Trans. Geosci. Remote Sensing, vol. 32, pp. 274-281, 1994.
    • IEEE Trans. Geosci. Remote Sensing
    • Jia, X.1    Richards, J.A.2
  • 9
    • 0023163683 scopus 로고    scopus 로고
    • Fast maximum likelihood classification of remotely-sensed imagery
    • vol. 8, pp. 723-734, 1987.
    • J. Settle and S. A. Briggs, Fast maximum likelihood classification of remotely-sensed imagery Int. J. Remote Sensing, vol. 8, pp. 723-734, 1987.
    • Int. J. Remote Sensing
    • Settle, J.1    Briggs, S.A.2
  • 11
    • 0000116015 scopus 로고    scopus 로고
    • The geometry of canonical variate analysis
    • vol. 30, pp. 268-280, 1981.
    • A. Campbell and W. R. Atchley, The geometry of canonical variate analysis Syst. Zoology, vol. 30, pp. 268-280, 1981.
    • Syst. Zoology
    • Campbell, A.1    Atchley, W.R.2
  • 12
    • 0026190348 scopus 로고    scopus 로고
    • Hierarchical classifier design in highdimensional, numerous class cases
    • vol. 29, pp. 518-528, 1991.
    • B. Kim and D. A. Landgrebe, Hierarchical classifier design in highdimensional, numerous class cases IEEE Trans. Geosci. Remote Sensing, vol. 29, pp. 518-528, 1991.
    • IEEE Trans. Geosci. Remote Sensing
    • Kim, B.1    Landgrebe, D.A.2
  • 13
    • 0025199172 scopus 로고    scopus 로고
    • Optimum band selection for supervised classification of multispectral data
    • vol. 56, pp. 55-60, 1990.
    • W. Mansel, W. J. Kramber, and J. K. Lee, Optimum band selection for supervised classification of multispectral data Photogramm. Eng. Remote Sensing, vol. 56, pp. 55-60, 1990.
    • Photogramm. Eng. Remote Sensing
    • Mansel, W.1    Kramber, W.J.2    Lee, J.K.3
  • 16
    • 84976676250 scopus 로고    scopus 로고
    • The optimality of Winograd's formula
    • vol. 15, pp. 352-353, 1972.
    • R. Harter, The optimality of Winograd's formula Commun. ACM, vol. 15, pp. 352-353, 1972.
    • Commun. ACM
    • Harter, R.1
  • 18
    • 43949147850 scopus 로고    scopus 로고
    • Winograd's method: A perspective for some pattern recognition problems
    • vol. 15, pp. 105-109, 1994.
    • B. Venkateswarlu and P. S. V. S. K. Raju, Winograd's method: A perspective for some pattern recognition problems Pattern Recognit. Lett., vol. 15, pp. 105-109, 1994.
    • Pattern Recognit. Lett.
    • Venkateswarlu, B.1    Raju, P.S.V.S.K.2
  • 20
    • 0027788411 scopus 로고    scopus 로고
    • Selection of optimum bands from TM scenes through mutual information analysis
    • vol. 48, pp. 2-11, 1993.
    • C. Conese and F. Maselli, Selection of optimum bands from TM scenes through mutual information analysis ISPRS J. Photogramm. Remote Sens., vol. 48, pp. 2-11, 1993.
    • ISPRS J. Photogramm. Remote Sens.
    • Conese, C.1    Maselli, F.2
  • 22
    • 77957741951 scopus 로고    scopus 로고
    • On the accuracy of statistical pattern recognizers
    • 14, pp. 55-63, 1968.
    • F. Hughes, On the accuracy of statistical pattern recognizers IEEE Trans. Inform. Theory, vol. IT-14, pp. 55-63, 1968.
    • IEEE Trans. Inform. Theory, Vol. IT
    • Hughes, F.1
  • 24
    • 0024163741 scopus 로고    scopus 로고
    • Reducing the computational requirements of the minimum distance classifier
    • vol. 25, pp. 117-128, 1988.
    • E. Hodgson, Reducing the computational requirements of the minimum distance classifier Remote Sens. Environ., vol. 25, pp. 117-128, 1988.
    • Remote Sens. Environ.
    • Hodgson, E.1
  • 25
    • 0021849288 scopus 로고    scopus 로고
    • Computationally-efficient maximum likelihood classifier employing prior probabilities for remotely-sensed data
    • vol. 6, pp. 369-376, 1985.
    • P. M. Mather, Computationally-efficient maximum likelihood classifier employing prior probabilities for remotely-sensed data Int. J. Remote Sensing, vol. 6, pp. 369-376, 1985.
    • Int. J. Remote Sensing
    • Mather, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.