메뉴 건너뛰기




Volumn 6, Issue , 1998, Pages 3433-3436

Cost-efficient approximation of linear systems with repeated and multi-channel filtering configurations

Author keywords

[No Author keywords available]

Indexed keywords

COST-EFFICIENT; EFFICIENT IMPLEMENTATION; FRACTIONAL FOURIER DOMAINS; MATRIX-VECTOR PRODUCTS; MULTI-CHANNEL FILTERING; TRADE OFF;

EID: 0031645486     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.1998.679603     Document Type: Conference Paper
Times cited : (7)

References (13)
  • 1
    • 0027652516 scopus 로고
    • Optical-coordinate transformation methods and optical-interconnection architectures
    • D. Mendlovic and H. M. Ozaktas. Optical-coordinate transformation methods and optical-interconnection architectures. Appl. Opt., 32:5119-5124, 1993.
    • (1993) Appl. Opt. , vol.32 , pp. 5119-5124
    • Mendlovic, D.1    Ozaktas, H.M.2
  • 3
    • 0030126889 scopus 로고    scopus 로고
    • Synthesis of mutual intensity distributions using the fractional fourier transform
    • M. F. Erden, H. M. Ozaktas, and D. Mendlovic. Synthesis of mutual intensity distributions using the fractional Fourier transform. Opt. Commun., 125:288-301, 1996.
    • (1996) Opt. Commun. , vol.125 , pp. 288-301
    • Erden, M.F.1    Ozaktas, H.M.2    Mendlovic, D.3
  • 4
    • 0028382656 scopus 로고
    • Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms
    • H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural. Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Am. A, 11:547-559, 1994.
    • (1994) J. Opt. Soc. Am. A , vol.11 , pp. 547-559
    • Ozaktas, H.M.1    Barshan, B.2    Mendlovic, D.3    Onural, L.4
  • 5
    • 0028546458 scopus 로고
    • The fractional Fourier transform and time-frequency representations
    • L. B. Almeida. The fractional Fourier transform and time-frequency representations. IEEE Trans. Sig. Proc, 42:3084-3091, 1994.
    • (1994) IEEE Trans. Sig. Proc , vol.42 , pp. 3084-3091
    • Almeida, L.B.1
  • 6
    • 0027682286 scopus 로고
    • Image rotation, Wigner rotation, and the fractional order Fourier transform
    • A. W. Lohmann. Image rotation, Wigner rotation, and the fractional order Fourier transform. /. Opt. Soc. Am. A, 10:2181-2186, 1993.
    • (1993) /. Opt. Soc. Am. A , vol.10 , pp. 2181-2186
    • Lohmann, A.W.1
  • 7
    • 0027740848 scopus 로고
    • Fractional Fourier transforms and their optical implementation, II
    • H. M. Ozaktas and D. Mendlovic. Fractional Fourier transforms and their optical implementation, II. /. Opt. Soc. Am. A 10:2522-2531, 1993.
    • (1993) /. Opt. Soc. Am. A , vol.10 , pp. 2522-2531
    • Ozaktas, H.M.1    Mendlovic, D.2
  • 8
    • 0030260572 scopus 로고    scopus 로고
    • Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering
    • H. M. Ozaktas. Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering. Sig. Proc., 54:81-84, 1996.
    • (1996) Sig. Proc. , vol.54 , pp. 81-84
    • Ozaktas, H.M.1
  • 12
    • 84894395857 scopus 로고    scopus 로고
    • Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration
    • M. F. Erden, M. A. Kutay, and H. M. Ozaktas. Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. Sub. to IEEE Trans. Sig. Proc.
    • Sub. to IEEE Trans. Sig. Proc
    • Erden, M.F.1    Kutay, M.A.2    Ozaktas, H.M.3
  • 13
    • 84892166310 scopus 로고    scopus 로고
    • Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domains
    • M. F. Erden, and H. M. Ozaktas. Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domains. Sub. to J. Opt. Soc. Am. A.
    • Sub. to J. Opt. Soc. Am. A
    • Erden, M.F.1    Ozaktas, H.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.