-
1
-
-
0039070218
-
Scalar curvature and symmetry group
-
eds. M. Berger et al. Kagai, Tokyo
-
[1] L. Bérard Bergery, Scalar curvature and symmetry group, in: Spectra of Riemannian Manifolds, eds. M. Berger et al. (Kagai, Tokyo, 1983).
-
(1983)
Spectra of Riemannian Manifolds
-
-
Bergery, L.B.1
-
2
-
-
0000857545
-
The Laplacian on asymptotically flat manifolds and the specification of scalar curvature
-
[2] M. Cantor and D. Brill, The Laplacian on asymptotically flat manifolds and the specification of scalar curvature, Compositio Math. 43 (1981) 317-330.
-
(1981)
Compositio Math.
, vol.43
, pp. 317-330
-
-
Cantor, M.1
Brill, D.2
-
4
-
-
0010094982
-
Global solutions of the lichnerowicz equation in general relativity on an asymptotically Euclidean manifold
-
[4] A. Chaljub-Simon and Y. Choquet-Bruhat, Global solutions of the Lichnerowicz equation in general relativity on an asymptotically Euclidean manifold, Gen. Rel. Grav. 12 (1980) 175-185.
-
(1980)
Gen. Rel. Grav.
, vol.12
, pp. 175-185
-
-
Chaljub-Simon, A.1
Choquet-Bruhat, Y.2
-
5
-
-
0002835512
-
The Cauchy problem
-
ed. A. Held, Plenum Press, New York
-
[5] Y. Choquet-Bruhat and J.W. York, Jr., The Cauchy problem, in: General Relativity and Gravitation, ed. A. Held, Vol. I (Plenum Press, New York, 1980).
-
(1980)
General Relativity and Gravitation
, vol.1
-
-
Choquet-Bruhat, Y.1
York J.W., Jr.2
-
7
-
-
0001527999
-
On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations
-
[7] H. Friedrich, On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations, Proc. Roy. Soc. London A 375 (1981) 169-184.
-
(1981)
Proc. Roy. Soc. London A
, vol.375
, pp. 169-184
-
-
Friedrich, H.1
-
8
-
-
0000076801
-
The asymptotic characteristic initial value problem for Einstein's vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system
-
[8] H. Friedrich, The asymptotic characteristic initial value problem for Einstein's vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system. Proc. Roy. Soc. London A 378 (1981) 401-421.
-
(1981)
Proc. Roy. Soc. London A
, vol.378
, pp. 401-421
-
-
Friedrich, H.1
-
9
-
-
0002801339
-
On purely radiative space-times
-
[9] H. Friedrich, On purely radiative space-times, Comm. Math. Phys. 103 (1986) 35-65.
-
(1986)
Comm. Math. Phys.
, vol.103
, pp. 35-65
-
-
Friedrich, H.1
-
10
-
-
0002217214
-
On static and radiative space-times
-
[10] H. Friedrich, On static and radiative space-times, Comm. Math. Phys. 119 (1988) 51-73.
-
(1988)
Comm. Math. Phys.
, vol.119
, pp. 51-73
-
-
Friedrich, H.1
-
11
-
-
84972497586
-
On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations
-
[11] H. Friedrich, On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Diff. Geom. 34 (1991) 275-345.
-
(1991)
J. Diff. Geom.
, vol.34
, pp. 275-345
-
-
Friedrich, H.1
-
12
-
-
0001301412
-
Einstein equations and conformal structure: Existence of anti-de Sitter-type space-times
-
[12] H. Friedrich, Einstein equations and conformal structure: Existence of Anti-de Sitter-type space-times, J. Geom. Phys. 17 (1995) 125-184.
-
(1995)
J. Geom. Phys.
, vol.17
, pp. 125-184
-
-
Friedrich, H.1
-
13
-
-
0010136337
-
Einstein equations and conformal structure
-
eds. S. Huggett et al. Oxford University Press, Oxford
-
[13] H. Friedrich, Einstein equations and conformal structure, in: Geometric Issues in the Foundations of Science, eds. S. Huggett et al. (Oxford University Press, Oxford, 1997).
-
(1997)
Geometric Issues in the Foundations of Science
-
-
Friedrich, H.1
-
16
-
-
0016594542
-
The Cauchy problem for quasi-linear symmetric hyperbolic systems
-
[16] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975) 181-205.
-
(1975)
Arch. Rational Mech. Anal.
, vol.58
, pp. 181-205
-
-
Kato, T.1
-
19
-
-
0002149087
-
Asymptotic properties of fields and space-time
-
[19] R. Penrose, Asymptotic properties of fields and space-time, Phys. Rev. Lett. 10 (1963) 66-68.
-
(1963)
Phys. Rev. Lett.
, vol.10
, pp. 66-68
-
-
Penrose, R.1
-
20
-
-
0001207885
-
Zero rest-mass fields including gravitation: Asymptotic behaviour
-
[20] R. Penrose, Zero rest-mass fields including gravitation: Asymptotic behaviour, Proc. Roy. Soc. London A 284 (1965) 159-203.
-
(1965)
Proc. Roy. Soc. London A
, vol.284
, pp. 159-203
-
-
Penrose, R.1
-
21
-
-
84972506352
-
Conformal deformation of a Riemannian metric to constant scalar curvature
-
[21] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984) 479-495.
-
(1984)
J. Diff. Geom.
, vol.20
, pp. 479-495
-
-
Schoen, R.1
-
22
-
-
29244463784
-
Proof of the positive mass theorem II
-
[22] R. Schoen and S.-T. Yau, Proof of the positive mass theorem II, Comm. Math. Phys. 79 (1981) 231-260.
-
(1981)
Comm. Math. Phys.
, vol.79
, pp. 231-260
-
-
Schoen, R.1
Yau, S.-T.2
-
23
-
-
0010134838
-
-
AMS Colloq. Publ., AMS, Providence, RI
-
[23] G. Szegö, Orthogonal Polynomials, 4th Ed., AMS Colloq. Publ., Vol. 23 (AMS, Providence, RI, 1978).
-
(1978)
Orthogonal Polynomials, 4th Ed.
, vol.23
-
-
Szegö, G.1
-
25
-
-
33744727108
-
A new proof of the positive energy theorem
-
[25] E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981) 381-402.
-
(1981)
Comm. Math. Phys.
, vol.80
, pp. 381-402
-
-
Witten, E.1
-
26
-
-
7244223708
-
Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity
-
[26] J.W. York, Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial-value problem of general relativity, J. Math. Phys. 14 (1973) 456-464.
-
(1973)
J. Math. Phys.
, vol.14
, pp. 456-464
-
-
York, J.W.1
|