-
1
-
-
0030188715
-
Jordan graphs
-
R. Aharoni, G. T. Herman, and M. Loebl, Jordan graphs, Graphical Models Image Process. 58, 1996, 345-359.
-
(1996)
Graphical Models Image Process.
, vol.58
, pp. 345-359
-
-
Aharoni, R.1
Herman, G.T.2
Loebl, M.3
-
2
-
-
0019392742
-
The theory, design, implementation, and evaluation of a three-dimensional surface detection algorithm
-
E. Artzy, G Frieder, and G. T. Herman, The theory, design, implementation, and evaluation of a three-dimensional surface detection algorithm, Comput. Graphical Image Process. 15, 1981, 1-24.
-
(1981)
Comput. Graphical Image Process.
, vol.15
, pp. 1-24
-
-
Artzy, E.1
Frieder, G.2
Herman, G.T.3
-
3
-
-
0022231883
-
Surface shading in the cuberille environment
-
Erratum appeared in 6(2), 1986, 67-69
-
L.-S. Chen, G. T. Herman, R. A. Reynolds, and J. K. Udupa, Surface shading in the cuberille environment, IEEE Comput. Graphics Appl. 5(12), 33-43, 1985. [Erratum appeared in 6(2), 1986, 67-69]
-
(1985)
IEEE Comput. Graphics Appl.
, vol.5
, Issue.12
, pp. 33-43
-
-
Chen, L.-S.1
Herman, G.T.2
Reynolds, R.A.3
Udupa, J.K.4
-
5
-
-
38249033141
-
Bridged graphs and geodesic convexity
-
M. Farber, Bridged graphs and geodesic convexity, Discrete Math. 66, 1987, 249-257.
-
(1987)
Discrete Math.
, vol.66
, pp. 249-257
-
-
Farber, M.1
-
10
-
-
77957031674
-
Boundaries in digital spaces: Basic theory
-
(T. Y. Kong and A. Rosenfeld, Eds.), Elsevier, Amsterdam
-
G. T. Herman, Boundaries in digital spaces: Basic theory, in Topological Algorithms in Digital Image Processing (T. Y. Kong and A. Rosenfeld, Eds.), pp. 233-261, Elsevier, Amsterdam, 1996.
-
(1996)
Topological Algorithms in Digital Image Processing
, pp. 233-261
-
-
Herman, G.T.1
-
12
-
-
0030164511
-
Jordan surfaces in simply connected digital spaces
-
G. T. Herman and E. Zhao, Jordan surfaces in simply connected digital spaces, J. Math. Imaging Vision 6, 1996, 121-138.
-
(1996)
J. Math. Imaging Vision
, vol.6
, pp. 121-138
-
-
Herman, G.T.1
Zhao, E.2
-
13
-
-
0029850156
-
Application of a new discreet form of Gauss' theorem for measuring volumes
-
S. W. Hughes, T. J. D'Arcy, D.J. Maxwell, J. E. Saunders, C. F. Ruff, W. S. C. Chiu, and R. J. Sheppard, Application of a new discreet form of Gauss' theorem for measuring volumes, Phys. Med. Biol. 41, 1996, 1809-1821.
-
(1996)
Phys. Med. Biol.
, vol.41
, pp. 1809-1821
-
-
Hughes, S.W.1
D'Arcy, T.J.2
Maxwell, D.J.3
Saunders, J.E.4
Ruff, C.F.5
Chiu, W.S.C.6
Sheppard, R.J.7
-
14
-
-
84948984323
-
Determination of discrete sampling grids with optimal topological and spectral properties
-
(S. Miguet, A. Montanvert, and S. Ubéda, Eds.), Springer-Verlag, Berlin
-
L. Ibáñez, C. Hamitouche, and C. Roux, Determination of discrete sampling grids with optimal topological and spectral properties, in Discrete Geometry for Computer Imagery (S. Miguet, A. Montanvert, and S. Ubéda, Eds.), pp.181-192, Springer-Verlag, Berlin, 1996.
-
(1996)
Discrete Geometry for Computer Imagery
, pp. 181-192
-
-
Ibáñez, L.1
Hamitouche, C.2
Roux, C.3
-
15
-
-
0022864736
-
Pattern analysis of n-dimensional digital images
-
Atlanta
-
E. Khalimsky, Pattern analysis of n-dimensional digital images, in IEEE Int. Conf. Syst. Man Cyber., Atlanta, 1983, pp. 1559-1562.
-
(1983)
IEEE Int. Conf. Syst. Man Cyber.
, pp. 1559-1562
-
-
Khalimsky, E.1
-
17
-
-
0024873404
-
A digital fundamental group
-
T. Y. Kong, A digital fundamental group, Comput. Graphics 13, 1989, 159-166.
-
(1989)
Comput. Graphics
, vol.13
, pp. 159-166
-
-
Kong, T.Y.1
-
18
-
-
0001656277
-
A topological approach to digital topology
-
T. Y. Kong, R. Kopperman, and P. R. Meyer, A topological approach to digital topology, Amer. Math. Monthly 98, 1991, 901-917.
-
(1991)
Amer. Math. Monthly
, vol.98
, pp. 901-917
-
-
Kong, T.Y.1
Kopperman, R.2
Meyer, P.R.3
-
19
-
-
0000637085
-
Concepts of digital topology
-
T. Y. Kong, A. W. Roscoe, and A. Rosenfeld, Concepts of digital topology. Topology Appl. 46, 1992, 219-262.
-
(1992)
Topology Appl.
, vol.46
, pp. 219-262
-
-
Kong, T.Y.1
Roscoe, A.W.2
Rosenfeld, A.3
-
22
-
-
0002668283
-
The Khalimsky line as a foundation for digital topology
-
(Y. L. O, A. Toet, D Foster, H. J. A. M. Heijmans, and P. Meer, Eds.), Springer-Verlag, Berlin
-
R. D. Kopperman, The Khalimsky line as a foundation for digital topology, in Shape in Picture: Mathematical Description of Shape in Grey-Level Images (Y. L. O, A. Toet, D Foster, H. J. A. M. Heijmans, and P. Meer, Eds.), pp. 3-20, Springer-Verlag, Berlin, 1994.
-
(1994)
Shape in Picture: Mathematical Description of Shape in Grey-Level Images
, pp. 3-20
-
-
Kopperman, R.D.1
-
23
-
-
51249176102
-
A Jordan surface theorem for three-dimensional digital spaces
-
R. D. Kopperman, P. R. Meyer, and R. G. Wilson, A Jordan surface theorem for three-dimensional digital spaces, Discrete Comput. Geom. 6, 1991, 155-162.
-
(1991)
Discrete Comput. Geom.
, vol.6
, pp. 155-162
-
-
Kopperman, R.D.1
Meyer, P.R.2
Wilson, R.G.3
-
24
-
-
0021620645
-
Discrete topology and countour definition
-
V. A. Kovalevsky, Discrete topology and countour definition, Pattern Recognition Lett. 2, 1984, 281-288.
-
(1984)
Pattern Recognition Lett.
, vol.2
, pp. 281-288
-
-
Kovalevsky, V.A.1
-
26
-
-
0029357162
-
Efficient 3D grids for image reconstruction using spherically-symmetric volume elements
-
S. Matej and R. M. Lewitt, Efficient 3D grids for image reconstruction using spherically-symmetric volume elements, IEEE Trans. Nucl. Sci. 42, 1995, 1361-1370.
-
(1995)
IEEE Trans. Nucl. Sci.
, vol.42
, pp. 1361-1370
-
-
Matej, S.1
Lewitt, R.M.2
-
28
-
-
0001069518
-
Sampling and reconstruction of wave-number-limited functions in n-dimensional Euclidean spaces
-
D. P. Petersen and D. Middleton, Sampling and reconstruction of wave-number-limited functions in n-dimensional Euclidean spaces, Inform. and Control 5, 1962, 279-323.
-
(1962)
Inform. and Control
, vol.5
, pp. 279-323
-
-
Petersen, D.P.1
Middleton, D.2
-
30
-
-
0001996435
-
Fuzzy digital topology
-
A. Rosenfeld, Fuzzy digital topology, Inform. and Control 40, 1979, 76-87.
-
(1979)
Inform. and Control
, vol.40
, pp. 76-87
-
-
Rosenfeld, A.1
-
31
-
-
0030145389
-
Fuzzy connectedness and object definition: Theory, algorithms and applications in image segmentation
-
J. K. Udupa and S. Samarasekera Fuzzy connectedness and object definition: Theory, algorithms and applications in image segmentation, Graphical Models Image Process. 58, 1996, 246-261.
-
(1996)
Graphical Models Image Process.
, vol.58
, pp. 246-261
-
-
Udupa, J.K.1
Samarasekera, S.2
|