-
1
-
-
0009372301
-
A scheme for integrating the non-linear equations of mathematical physics by the method of the inverse scattering problem
-
[1] V.E. Zakharov and A.B. Shabat, A scheme for integrating the non-linear equations of mathematical physics by the method of the inverse scattering problem. I, Fun. Anal. Priloz 8 (1974) 43.
-
(1974)
I, Fun. Anal. Priloz
, vol.8
, pp. 43
-
-
Zakharov, V.E.1
Shabat, A.B.2
-
2
-
-
0002439927
-
A scheme for integrating the non-linear equations of mathematical physics by the method of the inverse scattering problem
-
[2] V.E. Zakharov and A.B. Shabat, A scheme for integrating the non-linear equations of mathematical physics by the method of the inverse scattering problem. II, Fun. Anal. Priloz 13 (1979) 13.
-
(1979)
II, Fun. Anal. Priloz
, vol.13
, pp. 13
-
-
Zakharov, V.E.1
Shabat, A.B.2
-
3
-
-
0004075836
-
-
Consultants Bureau
-
[3] S.P. Novikov, S.V. Manakov, L.P. Pitaevskii and V.E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau, (1984).
-
(1984)
Theory of Solitons, Contemporary Soviet Mathematics
-
-
Novikov, S.P.1
Manakov, S.V.2
Pitaevskii, L.P.3
Zakharov, V.E.4
-
4
-
-
0000196386
-
Solitons in the chiral equation
-
[4] E.J. Beggs, Solitons in the chiral equation' Commun. Math. Phys. 128 (1990) 131.
-
(1990)
Commun. Math. Phys.
, vol.128
, pp. 131
-
-
Beggs, E.J.1
-
6
-
-
36048960407
-
The reduction problem and the inverse scattering method
-
[6] A.V. Mikhailov, The reduction problem and the inverse scattering method, Physica D 3 (1981) 73.
-
(1981)
Physica D
, vol.3
, pp. 73
-
-
Mikhailov, A.V.1
-
8
-
-
0001156146
-
Solitons in affine Toda field theories
-
[8] T.J. Hollowood, Solitons in affine Toda field theories, Nucl. Phys. B 384 (1992) 523-.
-
(1992)
Nucl. Phys. B
, vol.384
, pp. 523
-
-
Hollowood, T.J.1
-
9
-
-
0000717812
-
Solitons and the energy-momentum tensor for affine Toda theory
-
[9] D.I. Olive, N. Turok and J.W.R. Underwood, Solitons and the energy-momentum tensor for affine Toda theory, Nucl. Phys. B 401 (1993) 663.
-
(1993)
Nucl. Phys. B
, vol.401
, pp. 663
-
-
Olive, D.I.1
Turok, N.2
Underwood, J.W.R.3
-
12
-
-
0000784697
-
Vertex operators and soliton time delays in affine Toda field theory
-
[12] A. Fring, P.R. Johnson, M.A.C. Kneipp and D.I. Olive, Vertex operators and soliton time delays in affine Toda field theory, Nucl. Phys. B 430 (1994) 597.
-
(1994)
Nucl. Phys. B
, vol.430
, pp. 597
-
-
Fring, A.1
Johnson, P.R.2
Kneipp, M.A.C.3
Olive, D.I.4
-
15
-
-
0001654610
-
Multi-soliton solutions of affine Toda models
-
[15] Z. Zhu and D.G. Caldi, Multi-soliton solutions of affine Toda models, Nucl.Phys. B 436 (1995) 659.
-
(1995)
Nucl.phys. B
, vol.436
, pp. 659
-
-
Zhu, Z.1
Caldi, D.G.2
-
16
-
-
2442627086
-
Algebraic structure of Toda systems
-
[16] D.I. Olive and N. Turok, Algebraic structure of Toda systems, Nucl. Phys. B 220 (1983) 491.
-
(1983)
Nucl. Phys. B
, vol.220
, pp. 491
-
-
Olive, D.I.1
Turok, N.2
-
17
-
-
0009365510
-
The Toda lattice field theory heirarchies and zero-curvature conditions in Kac-Moody algebras
-
[17] D.I. Olive and N. Turok, The Toda lattice field theory heirarchies and zero-curvature conditions in Kac-Moody algebras, Nucl. Phys. B 265 (1986) 469.
-
(1986)
Nucl. Phys. B
, vol.265
, pp. 469
-
-
Olive, D.I.1
Turok, N.2
-
18
-
-
0010954859
-
Local conserved densities and zero-curvature conditions for Toda lattice field theories
-
[18] D.I. Olive and N. Turok, Local conserved densities and zero-curvature conditions for Toda lattice field theories, Nucl. Phys. B 257 (1985) 277.
-
(1985)
Nucl. Phys. B
, vol.257
, pp. 277
-
-
Olive, D.I.1
Turok, N.2
-
19
-
-
0002642283
-
The mass spectrum and coupling in affine Toda field theories
-
[19] A. Fring, H.C. Liao and D.I. Olive, The mass spectrum and coupling in affine Toda field theories, Phys. Lett. B 266 (1991) 82.
-
(1991)
Phys. Lett. B
, vol.266
, pp. 82
-
-
Fring, A.1
Liao, H.C.2
Olive, D.I.3
-
20
-
-
21344491833
-
GLM equations, tau functions and scattering data
-
[20] M.R. Niedermaier, GLM equations, Tau functions and scattering data, Commun. Math. Phys. 160 (1994) 391.
-
(1994)
Commun. Math. Phys.
, vol.160
, pp. 391
-
-
Niedermaier, M.R.1
-
23
-
-
0002990558
-
Quantum soliton mass corrections in SL(N) affine Toda field theory
-
[23] T.J. Hollowood, Quantum soliton mass corrections in SL(N) affine Toda field theory, Phys. Lett. B 300 (1993) 73.
-
(1993)
Phys. Lett. B
, vol.300
, pp. 73
-
-
Hollowood, T.J.1
-
24
-
-
0000970825
-
Quantising sl(N) solitons and the Hecke algebra
-
[24] T.J. Hollowood, Quantising sl(N) solitons and the Hecke algebra, Int. J. Mod. Phys. A 8 (1993) 947.
-
(1993)
Int. J. Mod. Phys. A
, vol.8
, pp. 947
-
-
Hollowood, T.J.1
-
25
-
-
0001731102
-
Quantum mass corrections for affine Toda solitons
-
[25] N.J. MacKay and G.M.T. Watts, Quantum mass corrections for affine Toda solitons, Nucl. Phys. B 441 (1995) 277.
-
(1995)
Nucl. Phys. B
, vol.441
, pp. 277
-
-
MacKay, N.J.1
Watts, G.M.T.2
-
26
-
-
0001275908
-
Hirota's solitons in the affine and the conformal affine Toda models
-
[26] H. Aratyn, C.P. Constantinidis, L.A. Ferreira, J.F. Gomes and A.H. Zimerman, Hirota's solitons in the affine and the conformal affine Toda models, Nucl.Phys. B 406 (1993) 727.
-
(1993)
Nucl.phys. B
, vol.406
, pp. 727
-
-
Aratyn, H.1
Constantinidis, C.P.2
Ferreira, L.A.3
Gomes, J.F.4
Zimerman, A.H.5
-
27
-
-
0010945892
-
Bäcklund transformations for non-linear sigma models with values in Riemannian symmetric spaces
-
[27] J. Harnad, Y. Saint-Aubin, and S. Shnider, Bäcklund transformations for non-linear sigma models with values in Riemannian symmetric spaces, Commun. Math. Phys. 92 (1984) 329.
-
(1984)
Commun. Math. Phys.
, vol.92
, pp. 329
-
-
Harnad, J.1
Saint-Aubin, Y.2
Shnider, S.3
-
28
-
-
0002470318
-
The soliton correlation matrix and the reduction problem for integrable systems
-
[28] J. Harnad, Y. Saint-Aubin and S. Shnider, The soliton correlation matrix and the reduction problem for integrable systems, Commun. Math. Phys. 93 (1984) 33.
-
(1984)
Commun. Math. Phys.
, vol.93
, pp. 33
-
-
Harnad, J.1
Saint-Aubin, Y.2
Shnider, S.3
-
29
-
-
0013101025
-
Darboux coordinates and Liouville-Arnold integration in loop algebras
-
[29] M.R. Adams, J. Harnad and J. Hurtubise, Darboux coordinates and Liouville-Arnold integration in loop algebras, Commun. Math. Phys. 155 (1993) 385.
-
(1993)
Commun. Math. Phys.
, vol.155
, pp. 385
-
-
Adams, M.R.1
Harnad, J.2
Hurtubise, J.3
|