-
1
-
-
0001327357
-
Mirror symmetry in three dimensional gauge theories
-
hep-th 9607207
-
[1] K. Intriligator and N. Seiberg, Mirror Symmetry in Three Dimensional Gauge Theories, Phys. Lett. B 387 (1996) 513, hep-th 9607207.
-
(1996)
Phys. Lett. B
, vol.387
, pp. 513
-
-
Intriligator, K.1
Seiberg, N.2
-
2
-
-
84972540623
-
The construction of ALE spaces as hyperkähler quotients
-
[2] P.B. Kronheimer, The Construction of ALE spaces as Hyperkähler Quotients, J. Diff. Geom. 29 (1989)665.
-
(1989)
J. Diff. Geom.
, vol.29
, pp. 665
-
-
Kronheimer, P.B.1
-
3
-
-
0031587005
-
Mirror symmetry in three-dimensional gauge theories, quivers and D-branes
-
hep-th 9611063 (preceding article in this issue)
-
[3] J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror Symmetry in Three-Dimensional Gauge Theories, Quivers and D-branes, Nucl. Phys. B 493 (1997) 101, hep-th 9611063 (preceding article in this issue).
-
(1997)
Nucl. Phys. B
, vol.493
, pp. 101
-
-
De Boer, J.1
Hori, K.2
Ooguri, H.3
Oz, Y.4
-
4
-
-
33646019535
-
Yang-Mills instantons on ALE gravitational instantons
-
[4] P.B. Kronheimer and H. Nakajima, Yang-Mills Instantons on ALE Gravitational Instantons, Math. Ann. 288 (1990)263.
-
(1990)
Math. Ann.
, vol.288
, pp. 263
-
-
Kronheimer, P.B.1
Nakajima, H.2
-
5
-
-
84974003660
-
Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras
-
[5] H. Nakajima, Instantons on ALE Spaces, Quiver Varieties, and Kac-Moody Algebras. Duke Math. 76 (1994) 365.
-
(1994)
Duke Math.
, vol.76
, pp. 365
-
-
Nakajima, H.1
-
13
-
-
0000515622
-
Instantons and geometric invariant theory
-
[13] S. Donaldson, Instantons and Geometric Invariant Theory, Comm. Math. Phys. 93 (1984)453.
-
(1984)
Comm. Math. Phys.
, vol.93
, pp. 453
-
-
Donaldson, S.1
-
20
-
-
13744264593
-
Massless black holes and conifolds in string theory
-
hep-th 9504090
-
[20] A. Strominger, Massless Black Holes and Conifolds in String Theory, Nucl. Phys. B451 (1995)97, hep-th 9504090.
-
(1995)
Nucl. Phys.
, vol.B451
, pp. 97
-
-
Strominger, A.1
-
22
-
-
0001438149
-
Level-rank duality of WZW models in conformal field theory
-
[21] T. Nakanishi and A. Tsuchiya, Level-rank duality of WZW models in conformal field theory, Comm. Math. Phys. 144 (1992)351.
-
(1992)
Comm. Math. Phys.
, vol.144
, pp. 351
-
-
Nakanishi, T.1
Tsuchiya, A.2
-
23
-
-
0039760322
-
Electric-magnetic duality in supersymmetric non-abelian gauge theories
-
[23] N. Seiberg, Electric-Magnetic Duality in Supersymmetric Non-Abelian Gauge Theories, Nucl. Phys. B435 (1995)129.
-
(1995)
Nucl. Phys.
, vol.B435
, pp. 129
-
-
Seiberg, N.1
-
26
-
-
0010064059
-
Black holes and conifolds in string theory
-
hep-th 9504145
-
[26] B.R. Greene, D.R. Morrison and A. Strominger, Black Holes and Conifolds in String Theory, Nucl. Phys. B451 (1995) 109, hep-th 9504145.
-
(1995)
Nucl. Phys.
, vol.B451
, pp. 109
-
-
Greene, B.R.1
Morrison, D.R.2
Strominger, A.3
-
27
-
-
0010794596
-
A geometric realization of confinement
-
hep-th 9608039
-
[27] B.R. Greene, D.R. Morrison and C. Vafa, A Geometric Realization of Confinement, hep-th 9608039. Comm. Math. Phys. 108 (1987)535.
-
(1987)
Comm. Math. Phys.
, vol.108
, pp. 535
-
-
Greene, B.R.1
Morrison, D.R.2
Vafa, C.3
-
28
-
-
0002525880
-
New hyperkähler metric and new supermultiplets
-
[28] U. Lindström and M. Roček, New Hyperkähler metric and New Supermultiplets, Comm. Math. Phys. 115 (1988)21.
-
(1988)
Comm. Math. Phys.
, vol.115
, pp. 21
-
-
Lindström, U.1
Roček, M.2
-
29
-
-
0000775802
-
Hyperkähler metrics and a generalization of the bogomolny equations
-
[29] H. Pedersen and Y.S. Poon, Hyperkähler Metrics and a Generalization of the Bogomolny Equations, Comm. Math. Phys. 117 (1988)569.
-
(1988)
Comm. Math. Phys.
, vol.117
, pp. 569
-
-
Pedersen, H.1
Poon, Y.S.2
|