-
1
-
-
51249183594
-
1-dense sets of reals are isomorphic
-
1-dense sets of reals are isomorphic, Israel J. Math. 38 (1981) 161-176.
-
(1981)
Israel J. Math.
, vol.38
, pp. 161-176
-
-
Abraham, U.1
Shelah, S.2
-
4
-
-
0010879676
-
Amoeba forcing, Suslin absoluteness, and additivity of measure
-
H. Judah, W. Just and H. Woodin, eds., MSRI Berkeley Springer, Berlin
-
[4] J. Bagaria and H. Judah, Amoeba forcing, Suslin absoluteness, and additivity of measure, in: H. Judah, W. Just and H. Woodin, eds., Set Theory of the Continuum, MSRI Berkeley (Springer, Berlin, 1992).
-
(1992)
Set Theory of the Continuum
-
-
Bagaria, J.1
Judah, H.2
-
6
-
-
0000762939
-
The independence of continuum hypothesis I, II
-
[6] P. Cohen, The independence of continuum hypothesis I, II, Proc. Natl. Acad. USA 50 (1963) 1143-1148; 51 (1964) 105-110.
-
(1963)
Proc. Natl. Acad. USA
, vol.50
, pp. 1143-1148
-
-
Cohen, P.1
-
7
-
-
0000669072
-
-
[6] P. Cohen, The independence of continuum hypothesis I, II, Proc. Natl. Acad. USA 50 (1963) 1143-1148; 51 (1964) 105-110.
-
(1964)
Proc. Natl. Acad. USA
, vol.51
, pp. 105-110
-
-
-
8
-
-
51249172590
-
Forcing with ideals and simple forcing notions
-
[7] M. Gitik and S. Shelah, Forcing with ideals and simple forcing notions, Israel J. Math. 68 (1989) 129-160.
-
(1989)
Israel J. Math.
, vol.68
, pp. 129-160
-
-
Gitik, M.1
Shelah, S.2
-
9
-
-
38249007117
-
More on simple forcing notions, and forcing with ideals
-
[8] M. Gitik and S. Shelah, More on simple forcing notions, and forcing with ideals, Ann. Pure Appl. Logic 59 (1993) 219-238.
-
(1993)
Ann. Pure Appl. Logic
, vol.59
, pp. 219-238
-
-
Gitik, M.1
Shelah, S.2
-
10
-
-
84972540598
-
Some exact equiconsistency results in set theory
-
[9] L. Harrington and S. Shelah, Some exact equiconsistency results in set theory, Notre Dame J. Formal Logic 26 (1985) 178-188.
-
(1985)
Notre Dame J. Formal Logic
, vol.26
, pp. 178-188
-
-
Harrington, L.1
Shelah, S.2
-
11
-
-
0010892726
-
Probleme 58
-
[10] F. Hausdorff, Probleme 58, Fund. Math. 20 (1933) 286.
-
(1933)
Fund. Math.
, vol.20
, pp. 286
-
-
Hausdorff, F.1
-
12
-
-
0001611470
-
ωω
-
T. Jech ed., American Mathematical Society, Providence, RI
-
ωω, in: T. Jech ed., Axiomatic Set Theory, Vol. II (American Mathematical Society, Providence, RI) (1974).
-
(1974)
Axiomatic Set Theory
, vol.2
-
-
Hechler, S.H.1
-
14
-
-
0004289448
-
-
Academic Press, New York
-
[13] T. Jech, Set Theory (Academic Press, New York, 1978).
-
(1978)
Set Theory
-
-
Jech, T.1
-
15
-
-
4644353508
-
Martin's axiom and the continuum
-
[14] H. Judah and A. Rosłanowski, Martin's axiom and the continuum, J. Symbol. Logic 60 (1995) 374-391.
-
(1995)
J. Symbol. Logic
, vol.60
, pp. 374-391
-
-
Judah, H.1
Rosłanowski, A.2
-
18
-
-
0001828143
-
Martin's axiom, measurability and equiconsistency results
-
[17] H. Judah and S. Shelah, Martin's axiom, measurability and equiconsistency results, J. Symbol. Logic 54 (1989) 78-94.
-
(1989)
J. Symbol. Logic
, vol.54
, pp. 78-94
-
-
Judah, H.1
Shelah, S.2
-
21
-
-
0001618009
-
Independence results in set theory by Cohen's method (IV)
-
[20] A. Lévy, Independence results in set theory by Cohen's method (IV), Not. Amer. Math. Soc. 10 (1963) 593.
-
(1963)
Not. Amer. Math. Soc.
, vol.10
, pp. 593
-
-
Lévy, A.1
-
22
-
-
0001659662
-
Internal Cohen extensions
-
[21] D. Martin and R. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970) 143-178.
-
(1970)
Ann. Math. Logic
, vol.2
, pp. 143-178
-
-
Martin, D.1
Solovay, R.2
-
24
-
-
51249181633
-
Can you take Solovay's inaccessible away?
-
[23] S. Shelah, Can you take Solovay's inaccessible away?, Israel J. Math. 48 (1984) 1-47.
-
(1984)
Israel J. Math.
, vol.48
, pp. 1-47
-
-
Shelah, S.1
-
25
-
-
52449146686
-
How special are Cohen and random forcings, i.e. Boolean algebras of the family of the subsets of reals modulo meager or null
-
[24] S. Shelah, How special are Cohen and random forcings, i.e. Boolean algebras of the family of the subsets of reals modulo meager or null, Israel J. Math. 88 (1994) 159-174.
-
(1994)
Israel J. Math.
, vol.88
, pp. 159-174
-
-
Shelah, S.1
-
26
-
-
0002548418
-
A model of set theory in which every set of reals is lebesgue measurable
-
[25] R. Solovay, A model of set theory in which every set of reals is lebesgue measurable, Ann. Math. 92 (1970) 1-56.
-
(1970)
Ann. Math.
, vol.92
, pp. 1-56
-
-
Solovay, R.1
-
27
-
-
0000772230
-
Iterated Cohen extensions and Souslin's problem
-
[26] R. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. Math. 94 (1971) 201-245.
-
(1971)
Ann. Math.
, vol.94
, pp. 201-245
-
-
Solovay, R.1
Tennenbaum, S.2
-
29
-
-
0000736789
-
Remarks on Martin's axiom and the continuum hypothesis
-
[28] S. Todorčević, Remarks on Martin's axiom and the continuum hypothesis, Canadian J. Math. 43 (1991) 832-851.
-
(1991)
Canadian J. Math.
, vol.43
, pp. 832-851
-
-
Todorčević, S.1
|