메뉴 건너뛰기




Volumn 141, Issue 1, 1997, Pages 150-178

The zero relaxation limit for the hydrodynamic Whitham traffic flow model

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0031581268     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1006/jdeq.1997.3311     Document Type: Article
Times cited : (35)

References (16)
  • 1
    • 84990689276 scopus 로고
    • Hyperbolic conservation laws with stiff relaxation terms and entropy
    • 1. G.-Q. Chen, C. D. Levermore, and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), 787-830.
    • (1994) Comm. Pure Appl. Math. , vol.47 , pp. 787-830
    • Chen, G.-Q.1    Levermore, C.D.2    Liu, T.-P.3
  • 2
    • 0024481658 scopus 로고
    • The study on application way of the compensated compactness theory
    • 2. G.-Q. Chen and Y. Lu, The study on application way of the compensated compactness theory, Chin. Sci. Bull. 34 (1989), 15-19.
    • (1989) Chin. Sci. Bull. , vol.34 , pp. 15-19
    • Chen, G.-Q.1    Lu, Y.2
  • 3
    • 0000298704 scopus 로고
    • Convergence of the Law-Friedrichs scheme for isentropic gas dynamics I-II
    • 3. G. Q. Chen, X. Ding, and P. Luo, Convergence of the Law-Friedrichs scheme for isentropic gas dynamics I-II, Acta Math. Sci. 5 (1985), 415-472.
    • (1985) Acta Math. Sci. , vol.5 , pp. 415-472
    • Chen, G.Q.1    Ding, X.2    Luo, P.3
  • 4
    • 0000805398 scopus 로고
    • Positively invariant regions for systems of non-linear diffusion equations
    • 4. K. N. Chueh, C. C. Conley, and J. A. Smoller, Positively invariant regions for systems of non-linear diffusion equations, Indiana Univ. Math. J. 26 (1977), 372-411.
    • (1977) Indiana Univ. Math. J. , vol.26 , pp. 372-411
    • Chueh, K.N.1    Conley, C.C.2    Smoller, J.A.3
  • 5
    • 0002578353 scopus 로고
    • Convergence of the viscosity method for isentropic gas dynamics
    • 5. R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), 1-30.
    • (1983) Comm. Math. Phys. , vol.91 , pp. 1-30
    • DiPerna, R.J.1
  • 6
    • 0021835204 scopus 로고
    • Measure-valued solutions to conservation laws
    • 6. R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), 223-270.
    • (1985) Arch. Rational Mech. Anal. , vol.88 , pp. 223-270
    • DiPerna, R.J.1
  • 7
    • 84990701264 scopus 로고
    • The relaxation schemes for systems of conservation laws in arbitrary space dimensions
    • 7. S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), 235-276.
    • (1995) Comm. Pure Appl. Math. , vol.48 , pp. 235-276
    • Jin, S.1    Xin, Z.2
  • 8
    • 0000220623 scopus 로고
    • First order quasi-linear equations with several space variables
    • 8. S. Kružkov, First order quasi-linear equations with several space variables, Mat. Sb. 123 (1970), 228-255.
    • (1970) Mat. Sb. , vol.123 , pp. 228-255
    • Kružkov, S.1
  • 9
    • 0030539239 scopus 로고    scopus 로고
    • Existence and stability of entropy solutions for the hyperbolic systems or isentropic gas dynamics in Eulerian and Lagrangian coordinates
    • 9. P. L. Lions, B. Perthame, and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems or isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996), 599.
    • (1996) Comm. Pure Appl. Math. , vol.49 , pp. 599
    • Lions, P.L.1    Perthame, B.2    Souganidis, P.E.3
  • 10
    • 21544449601 scopus 로고
    • Hyperbolic conservation laws with relaxation
    • 10. T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987), 153-175.
    • (1987) Comm. Math. Phys. , vol.108 , pp. 153-175
    • Liu, T.-P.1
  • 11
    • 0002878076 scopus 로고
    • Relaxation and singular convergence for quasilinear hyperbolic systems
    • (L. Boccardo, M. A. Herrero, and A. Tesei, Eds.), Quaderno IAC-CNR, Rome
    • 11. P. Marcati, Relaxation and singular convergence for quasilinear hyperbolic systems, in "First Italian-Spain Meeting on Nonlinear Analisis" (L. Boccardo, M. A. Herrero, and A. Tesei, Eds.), pp. 140-148, Quaderno IAC-CNR, Rome, 1989.
    • (1989) First Italian-Spain Meeting on Nonlinear Analisis , pp. 140-148
    • Marcati, P.1
  • 12
    • 0001764754 scopus 로고
    • -1,q est compacte pour tout q < 2
    • -1,q est compacte pour tout q < 2, Math. Pure Appl. 60 (1981), 309-322.
    • (1981) Math. Pure Appl. , vol.60 , pp. 309-322
    • Murat, F.1
  • 13
    • 0030490070 scopus 로고    scopus 로고
    • Convergence to equilibrium for the relaxation approximation of conservation laws
    • 13. R. Natalini, Convergence to equilibrium for the relaxation approximation of conservation laws, Comm. Pure Appl. Math. 49 (1996), 795-823.
    • (1996) Comm. Pure Appl. Math. , vol.49 , pp. 795-823
    • Natalini, R.1
  • 14
    • 84974746773 scopus 로고
    • The instant-response limit in Whitham's nonlinear traffic-flow model: Uniform well-posedness and global existence
    • 14. S. Schochet, The instant-response limit in Whitham's nonlinear traffic-flow model: Uniform well-posedness and global existence, Asymptotic Anal. 1 (1988), 263-282.
    • (1988) Asymptotic Anal. , vol.1 , pp. 263-282
    • Schochet, S.1
  • 15
    • 0001137470 scopus 로고
    • An existence result for scalar conservation laws using measure valued solutions
    • 15. A. Szepessy, An existence result for scalar conservation laws using measure valued solutions, Comm. Partial Differential Equations 14 (1989), 1329-1350.
    • (1989) Comm. Partial Differential Equations , vol.14 , pp. 1329-1350
    • Szepessy, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.